SONY

Diagonal 6.46 mm (Type 1/2.8) CMOS Solid-state Image Sensor with Square Pixel for Color Cameras

IMX291LQR-C

STARVIS

For the latest data sheet, please visit www.sunnywale.com

Description

The IMX291LQR-C is a diagonal 6.46 mm (Type 1/2.8) CMOS active pixel type solid-state image sensor with a square pixel array and 2.13 M effective pixels. This chip operates with analog 2.9 V, digital 1.2 V, and interface 1.8 V triple power supply, and has low power consumption. High sensitivity, low dark current and no smear are achieved through the adoption of R, G and B primary color mosaic filters. This chip features an electronic shutter with variable charge-integration time.

(Applications: Surveillance cameras, FA cameras, Industrial cameras)

Features

- ◆ CMOS active pixel type dots
- ◆ Built-in timing adjustment circuit, H/V driver and serial communication circuit
- ◆ Input frequency: 74.25 MHz / 37.125 MHz
- ♦ Number of recommended recording pixels: 1920 (H) x 1080 (V) approx. 2.07M pixel
- ◆ Readout mode

All-pixel scan mode

720p-HD readout mode

Window cropping mode

Vertical / Horizontal direction-normal / inverted readout mode

- ◆ Readout rate
 - Maximum frame rate in Full HD 1080p mode: 120 frame / s
- ◆ Wide dynamic range (WDR) function

Multiple exposure WDR

- ◆ Variable-speed shutter function (resolution 1H units)
- ◆ 10-bit / 12-bit A/D converter
- ◆ Conversion gain switching (HCG Mode / LCG Mode)
- CDS / PGA function

0 dB to 30 dB: Analog Gain 30 dB (step pitch 0.3 dB)

30.3 dB to 72 dB: Analog Gain 30 dB + Digital Gain 0.3 to 42 dB (step pitch 0.3 dB)

◆ Supports I/O switching

CMOS logic parallel SDR output

Low voltage LVDS (150 m Vp-p) serial (2 ch / 4 ch / 8 ch switching) DDR output

CSI-2 serial data output (2 Lane / 4 Lane, RAW10 / RAW12 output)

◆ Recommended exit pupil distance: -30 mm to -∞

Sony reserves the right to change products and specifications without prior notice.

This information does not convey any license by any implication or otherwise under any patents or other right.

Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Device Structure

- ◆ CMOS image sensor
- ◆ Image size Type 1/2.8
- ◆ Total number of pixels 1945 (H) × 1109 (V) approx. 2.16 M pixels
- ♦ Number of effective pixels 1945 (H) × 1097 (V) approx. 2.13 M pixels
- ♦ Number of active pixels 1937 (H) × 1097 (V) approx. 2.12 M pixels
- ◆ Number of recommended recording pixels 1920 (H) x 1080 (V) approx. 2.07 M pixels
- ◆ Unit cell size 2.9 μm (H) × 2.9 μm (V)
- ◆ Optical black Horizontal (H) direction: Front 0 pixels, rear 0 pixels Vertical (V) direction: Front 10 pixels, rear 0 pixels
- ◆ Dummy
 Horizontal (H) direction: Front 0 pixels, rear 3 pixels
 Vertical (V) direction: Front 0 pixels, rear 0 pixels
- Substrate material Silicon

Absolute Maximum Ratings

Item	Symbol	Min.	Max.	Unit	Remarks
Supply voltage (analog 2.9 V)	AV_{DD}	-0.3	3.3	>	
Supply voltage (interface 1.8 V)	OV_DD	-0.3	3.3	٧	
Supply voltage (digital 1.2 V)	DV_DD	-0.3	2.0	V	
Input voltage	VI	-0.3	OV _{DD} + 0.3	V	Not exceed 3.3 V
Output voltage	VO	-0.3	OV _{DD} + 0.3	V	Not exceed 3.3 V

Application Conditions

Item	Symbol	Min.	Тур.	Max.	Unit
Supply voltage (analog 2.9 V)	AV _{DD}	2.80	2.90	3.00	V
Supply voltage (Interface 1.8 V)	OV_{DD}	1.70	1.80	1.90	V
Supply voltage (digital 1.2 V)	DV_{DD}	1.10	1.20	1.30	V
Performance guarantee temperature	Tspec	-10	_	60	°C
Operating guarantee temperature	Topr	-30	_	85	°C
Storage guarantee temperature	Tstg	-40	_	85	°C

USE RESTRICTION NOTICE

This USE RESTRICTION NOTICE ("Notice") is for customers who are considering or currently using the image sensor products ("Products") set forth in this specifications book. Sony Corporation ("Sony") may, at any time, modify this Notice which will be available to you in the latest specifications book for the Products. You should abide by the latest version of this Notice. If a Sony subsidiary or distributor has its own use restriction notice on the Products, such a use restriction notice will additionally apply between you and the subsidiary or distributor. You should consult a sales representative of the subsidiary or distributor of Sony on such a use restriction notice when you consider using the Products.

Use Restrictions

- The Products are intended for incorporation into such general electronic equipment as office products, communication products, measurement products, and home electronics products in accordance with the terms and conditions set forth in this specifications book and otherwise notified by Sony from time to time
- You should not use the Products for critical applications which may pose a life- or injury-threatening
 risk or are highly likely to cause significant property damage in the event of failure of the Products. You
 should consult your sales representative beforehand when you consider using the Products for such
 critical applications. In addition, you should not use the Products in weapon or military equipment.
- Sony disclaims and does not assume any liability and damages arising out of misuse, improper use, modification, use of the Products for the above-mentioned critical applications, weapon and military equipment, or any deviation from the requirements set forth in this specifications book.

Design for Safety

 Sony is making continuous efforts to further improve the quality and reliability of the Products; however, failure of a certain percentage of the Products is inevitable. Therefore, you should take sufficient care to ensure the safe design of your products such as component redundancy, anti-conflagration features, and features to prevent mis-operation in order to avoid accidents resulting in injury or death, fire or other social damage as a result of such failure.

Export Control

 If the Products are controlled items under the export control laws or regulations of various countries, approval may be required for the export of the Products under the said laws or regulations.
 You should be responsible for compliance with the said laws or regulations.

No License Implied

• The technical information shown in this specifications book is for your reference purposes only. The availability of this specifications book shall not be construed as giving any indication that Sony and its licensors will license any intellectual property rights in such information by any implication or otherwise. Sony will not assume responsibility for any problems in connection with your use of such information or for any infringement of third-party rights due to the same. It is therefore your sole legal and financial responsibility to resolve any such problems and infringement.

Governing Law

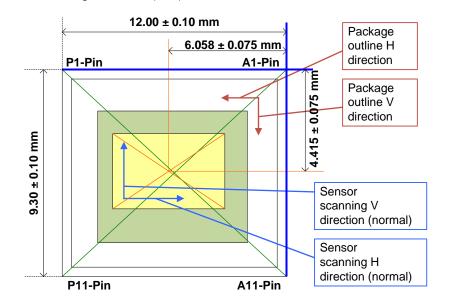
This Notice shall be governed by and construed in accordance with the laws of Japan, without reference
to principles of conflict of laws or choice of laws. All controversies and disputes arising out of or relating
to this Notice shall be submitted to the exclusive jurisdiction of the Tokyo District Court in Japan as the
court of first instance.

Other Applicable Terms and Conditions

The terms and conditions in the Sony additional specifications, which will be made available to you when
you order the Products, shall also be applicable to your use of the Products as well as to this
specifications book. You should review those terms and conditions when you consider purchasing
and/or using the Products.

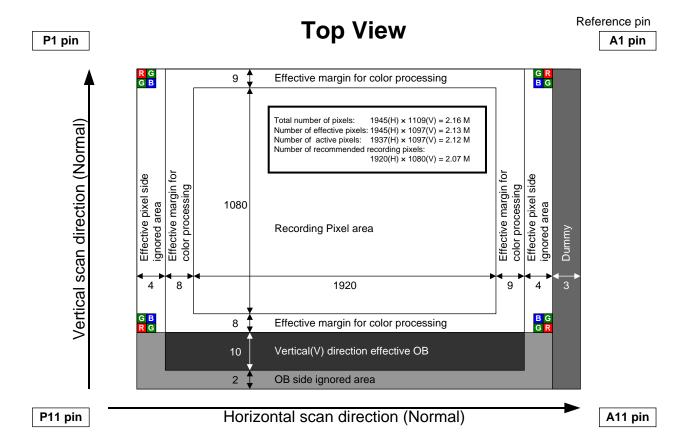
General-0.0.8

Contents


Description	1
Features	1
Device Structure	2
Absolute Maximum Ratings	3
Application Conditions	3
USE RESTRICTION NOTICE	
Optical Center	
Pixel Arrangement	8
Block Diagram and Pin Configuration	
Pin Description	
Electrical Characteristics	
DC Characteristics	
Current Consumption	15
AC Characteristics	16
Master Clock Waveform (INCK)	16
XVS / XHS Input Characteristics In Slave Mode (XMASTER pin = High)	
XVS / XHS Input Characteristics In Master Mode (XMASTER pin = Low, CMOS Output)	
Serial Communication	
DLCKP / DLCKM, DLOP / DLOM	
I/O Equivalent Circuit Diagram	
Spectral Sensitivity Characteristics	
Image Sensor Characteristics	24
Zone Definition	24
Image Sensor Characteristics Measurement Method	25
Measurement Conditions	25
Color Coding of Physical Pixel Array	25
Definition of standard imaging conditions	
Measurement Method	26
Setting Registers Using Serial Communication	27
Description of Setting Registers (4-wire)	
Register Communication Timing (4-wire)	
Register Write and Read (4-wire)	28
Description of Setting Registers (I ² C)	29
Register Communication Timing (1 ² C)	29
Communication Protocol	30
Register Write and Read (I ² C)	31
Single Read from Random Location	31
Single Read from Current Location	31
Sequential Read Starting from Random Location	
Sequential Read Starting from Current Location	32
Single Write to Random Location	
Sequential Write Starting from Random Location	
Register Map	
Readout Drive mode	
Sync code (Parallel CMOS output / Serial LVDS output)	
Sync Code Output Timing	
Image Data Output Format (CSI-2 output)	
Frame Format	
Frame Structure	53
Embedded Data Line	
Image Data Output Format	
All-pixel scan mode (Full HD 1080p)	
Window Cropping Mode	63
HD720p mode	71
Description of Various Function	77
Standby Mode	77
Slave Mode and Master Mode	
Gain Adjustment Function	80

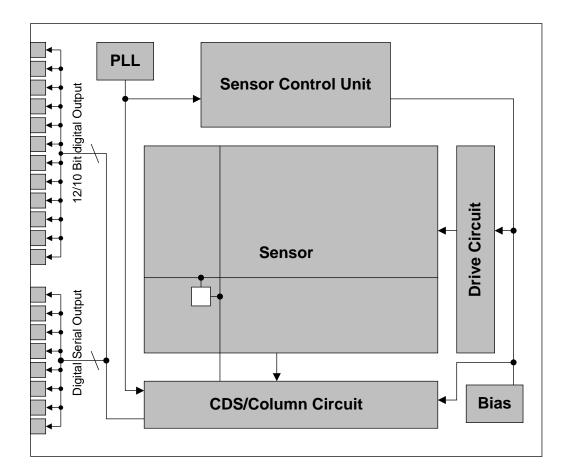
SONY

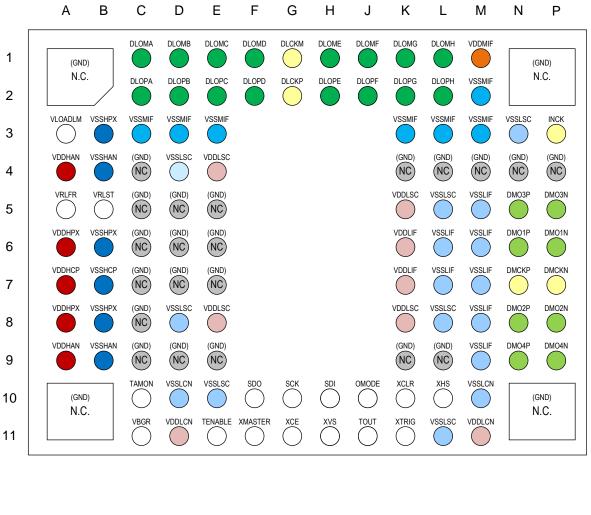
Black Level Adjustment Function	81
Normal Operation and Inverted Operation	82
Shutter and Integration Time Settings	
Example of Integration Time Setting	83
Normal Exposure Operation (Controlling the Integration Time in 1H Units)	82
Long Exposure Operation (Control by Expanding the Number of Lines per Frame)	
Example of Integration Time Settings	86
Signal Output	87
Output Pin Settings	87
CSI-2 output	90
MIPI Transmitter	92
Output Pin Bit Width Selection	93
Number of Internal A/D Conversion Bits Setting	94
Output Rate Setting	95
Output Signal Range	95
INCK Setting	96
Register Hold Setting	96
Software Reset (CMOS parallel / Low voltage LVDS serial only)	97
Mode Transitions	
Power-on and Power-off Sequence	99
Power-on sequence	99
Power-off sequence	100
Sensor Setting Flow	101
Setting Flow in Sensor Slave Mode	
Setting Flow in Sensor Master Mode	
Peripheral Circuit	103
Spot Pixel Specifications	
Zone Definition	
Notice on White Pixels Specifications	
Measurement Method for Spot Pixels	
Spot Pixel Pattern Specification	
Marking	
Notes On Handling	
Package Outline	
List of Trademark Logos and Definition Statements	


Optical Center

Top View Package center Optical center Package reference (H, V)

Optical Center


Pixel Arrangement


^{*} Reference pin number is consecutive numbering of package pin array. See the Pin Configuration for the number of each pin.

Pixel Arrangement (Top View)

Block Diagram and Pin Configuration

Block Diagram

<sup>Analog Power Supply (2.9V)
Digital Power Supply (1.8V)
Digital GND
Digital Power Supply (1.2V)
Digital GND
Clock
Data output (CMOS/LVDS)
Data output (CSI-2)</sup>

*The N.C. pin that is shown with (GND) can be connected to GND.

Pin Configuration (Bottom View)

Pin Description

No.	Pin No	I/O	Analog /Digital	Symbol	Description	Remarks
1	A1	_		N.C.	_	GND connectable
2	A3	0	Α	VLOADLM	Reference pin	
3	A4	Power	Α	VDDHAN	2.9 V power supply	
4	A5	0	Α	VRLFR	Reference pin	
5	A6	Power	Α	VDDHPX	2.9 V power supply	
6	A7	Power	А	VDDHCP	2.9 V power supply	
7	A8	Power	Α	VDDHPX	2.9 V power supply	
8	A9	Power	Α	VDDHAN	2.9 V power supply	
9	A11	_		N.C.	_	GND connectable
10	В3	GND	Α	VSSHPX	2.9 V GND	
11	B4	GND	Α	VSSHAN	2.9 V GND	
12	B5	0	Α	VRLST	Reference pin	
13	В6	GND	Α	VSSHPX	2.9 V GND	
14	В7	GND	Α	VSSHCP	2.9 V GND	
15	B8	GND	Α	VSSHPX	2.9 V GND	
16	B9	GND	Α	VSSHAN	2.9 V GND	
17	C1	0	D	DLOMA	CMOS output / LVDS output	data
18	C2	0	D	DLOPA	CMOS output / LVDS output	data
19	C3	GND	D	VSSMIF	1.8 V GND	
20	C4	_		N.C.	_	GND connectable
21	C5	_		N.C.	_	GND connectable
22	C6	_	_	N.C.	_	GND connectable
23	C7	_	_	N.C.	_	GND connectable
24	C8	_	_	N.C.	_	GND connectable
25	C9	_		N.C.	_	GND connectable
26	C10	0	Α	TAMON	TEST output pin	OPEN
27	C11	0	Α	VBGR	Reference pin	
28	D1	0	D	DLOMB	CMOS output / LVDS output	data
29	D2	0	D	DLOPB	CMOS output / LVDS output	data
30	D3	GND	D	VSSMIF	1.8 V GND	
31	D4	GND	D	VSSLSC	1.2 V GND	
32	D5	_		N.C.	_	GND connectable
33	D6	_	_	N.C.	_	GND connectable
34	D7	_	_	N.C.	_	GND connectable
35	D8	GND	D	VSSLSC	1.2 V GND	
36	D9	_	_	N.C.	_	GND connectable
37	D10	GND	D	VSSLCN	1.2 V GND	
38	D11	Power	D	VDDLCN	1.2 V power supply	

No.	Pin No	I/O	Analog /Digital	Symbol	Description	Remarks
39	E1	0	D	DLOMC	CMOS output / LVDS output	data
40	E2	0	D	DLOPC	CMOS output / LVDS output	data
41	E3	GND	D	VSSMIF	1.8 V GND	
42	E4	Power	D	VDDLSC	1.2 V power supply	
43	E5	_	_	N.C.	_	GND connectable
44	E6	_	_	N.C.	_	GND connectable
45	E7	_	_	N.C.	_	GND connectable
46	E8	Power	D	VDDLSC	1.2 V power supply	
47	E9	_	_	N.C.	_	GND connectable
48	E10	GND	D	VSSLSC	1.2 V GND	
49	E11	I	D	TENABLE	TEST Enable	OPEN
50	F1	0	D	DLOMD	CMOS output / LVDS output	data
51	F2	0	D	DLOPD	CMOS output / LVDS output	data
52	F10	0	D	SDO	Communication output	4-wire: SDO pin I ² C: Open
53	F11	I	D	XMASTER	Master / Slave selection	High: Slave mode / Low: Master mode
54	G1	0	D	DLCKM	CMOS output / LVDS output	clock
55	G2	0	D	DLCKP	CMOS output / LVDS output	clock
56	G10	I	D	SCK	Communication clock	4-wire: SCK pin I ² C: SCL pin
57	G11	I	D	XCE	Communication enable	4-wire: XCE pin I ² C: Fixed to High
58	H1	0	D	DLOME	CMOS output / LVDS output	data
59	H2	0	D	DLOPE	CMOS output / LVDS output	data
60	H10	I/O	D	SDI	Communication input	4-wire: SDI pin I ² C: SDA pin
61	H11	I/O	D	XVS	Vertical sync signal	
62	J1	0	D	DLOMF	CMOS output / LVDS output	data
63	J2	0	D	DLOPF	CMOS output / LVDS output	data
64	J10	I	D	OMODE	Serial output interface selection	High: LVDS / Low: CSI-2
65	J11	0	D	TOUT	TEST output pin	OPEN
66	K1	0	D	DLOMG	CMOS output / LVDS output	data
67	K2	0	D	DLOPG	CMOS output / LVDS output	data
68	K3	GND	D	VSSMIF	1.8 V GND	
69	K4	_		N.C.	_	GND connectable
70	K5	Power	D	VDDLSC	1.2 V power supply	
71	K6	Power	D	VDDLIF	1.2 V power supply	
72	K7	Power	D	VDDLIF	1.2 V power supply	
73	K8	Power	D	VDDLSC	1.2 V power supply	
74	K9	_	_	N.C.	_	GND connectable
75	K10	1	D	XCLR	System clear	High: Normal / Low: Clear
76	K11	I	D	XTRIG	Trigger mode input	OPEN
77	L1	0	D	DLOMH	CMOS output / LVDS output	data
78	L2	0	D	DLOPH	CMOS output / LVDS output	data

No.	Pin No	I/O	Analog /Digital	Symbol	Description	Remarks
79	L3	GND	D	VSSMIF	1.8 V GND	
80	L4	_	_	N.C.	_	GND connectable
81	L5	GND	D	VSSLSC	1.2 V GND	
82	L6	GND	D	VSSLIF	1.2 V GND	
83	L7	GND	D	VSSLIF	1.2 V GND	
84	L8	GND	D	VSSLSC	1.2 V GND	
85	L9	1		N.C.	_	GND connectable
86	L10	I/O	D	XHS	Horizontal sync signal	
87	L11	GND	D	VSSLSC	1.2 V GND	
88	M1	Power	D	VDDMIF	1.8 V power supply	
89	M2	GND	D	VSSMIF	1.8 V GND	
90	М3	GND	D	VSSMIF	1.8 V GND	
91	M4	1		N.C.	_	GND connectable
92	M5	GND	D	VSSLIF	1.2 V GND	
93	M6	GND	D	VSSLIF	1.2 V GND	
94	M7	GND	D	VSSLIF	1.2 V GND	
95	M8	GND	D	VSSLIF	1.2 V GND	
96	M9	GND	D	VSSLIF	1.2 V GND	
97	M10	GND	D	VSSLCN	1.2 V GND	
98	M11	Power	D	VDDLCN	1.2 V power supply	
99	N3	GND	D	VSSLSC	1.2 V GND	
100	N4			N.C.	_	GND connectable
101	N5	0	D	DMO3P	CSI-2 output	data
102	N6	0	D	DMO1P	CSI-2 output	data
103	N7	0	D	DMCKP	CSI-2 output	clock
104	N8	0	D	DMO2P	CSI-2 output	data
105	N9	0	D	DMO4P	CSI-2 output	data
106	P1	1	1	N.C.	_	GND connectable
107	P3	I	D	INCK	Master clock input	
108	P4		_	N.C.	_	GND connectable
109	P5	0	D	DMO3N	CSI-2 output	data
110	P6	0	D	DMO1N	CSI-2 output	data
111	P7	0	D	DMCKN	CSI-2 output	clock
112	P8	0	D	DMO2N	CSI-2 output	data
113	P9	0	D	DMO4N	CSI-2 output	data
114	P11	_	_	N.C.	_	GND connectable

Electrical Characteristics

DC Characteristics

Item	Item		Symbol	Condition	Min.	Тур.	Max.	Unit
_	analog	VDDHx	AV_{DD}		2.80	2.90	3.00	V
Supply voltage	Interface	VDDMx	OV_{DD}		1.70	1.80	1.90	V
	digital	VDDLx	DV_DD		1.10	1.20	1.30	V
		XHS XVS XCLR INCK XMASTER	VIH	XVS / XHS	0.8OV _{DD}	_	_	V
Digital input vol	itage	OMODE SCK SDI XCE XTRIG	VIL	Slave Mode		_	0.20V _{DD}	V
			VOH	IOH = -2 mA	OV _{DD} -0.4	_	_	V
		DLOP [A:F]	VOL	IOL = 2 mA	_	_	0.4	V
		DLOM [A:F] DLCKP	VCM	Low voltage LVDS	_	OV _{DD} /2	_	V
Digital output voltage		age DLCKM		Low voltage LVDS (Termination resistance: 100 Ω)	100	150	220	mV
		XHS XVS	VOH	XVS / XHS	OV _{DD} -0.4	_	_	V
		SDO TOUT	VOL	Master Mode	_	_	0.4	V

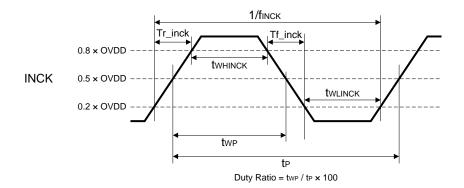
LVDS output

Current Consumption

			Ту	/p.	M	ax.	
Item	pin	Symbol	Standard luminous intensity	Saturated luminous intensity	Standard luminous intensity	Saturated luminous intensity	Unit
Operating current	VDDH	IAV_{DD}	54	53	99	97	mA
Low voltage LVDS serial 8 ch	VDDM	IOV_{DD}	16	15	25	24	mA
Full HD 1080p mode	VDDL	IDV_DD	77	95	110	192	mA
Operating current	VDDH	IAV _{DD}	55	54	99	97	mA
MIPI CSI-2 / 4 Lane 12 bit, 60 frame/s	VDDM	IOV _{DD}	1	1	1	1	mA
Full HD 1080p mode	VDDL	IDV_DD	94	111	130	229	mA
Operating current	VDDH	IAV _{DD}	55	54	98	97	mA
CMOS parallel SDR 12 bit, 30 frame/s	VDDM	IOV_{DD}	17	17	30	30	mA
Full HD 1080p	VDDL	IDV_DD	49	59	78	138	mA
	VDDH	IAV _{DD} _STB	_	_	0.1		mA
Standby current	VDDM	IOV _{DD} _STB	_		0.1		mA
	VDDL	IDV _{DD} _STB	_		14	1.9	mA

Operating current: (Typ.) Supply voltage 2.90 V / 1.8 V / 1.2 V, Tj = $25 ^{\circ}\text{C}$

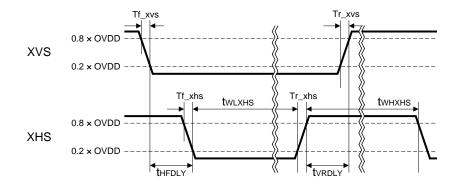
(Max.) Supply voltage 3.00 V / 1.9 V / 1.3 V, Tj = 60 °C, worst state of internal circuit


operating current consumption,

Standby: (Max.) Supply voltage 3.00 V / 1.9 V / 1.3 V, Tj = $60 ^{\circ}$ C, INCK: 0 V, light-obstructed state.

Standard luminous intensity: luminous intensity at 1/3 of the sensor saturated Saturated luminous intensity: luminous intensity when the sensor is saturated.

AC Characteristics


Master Clock Waveform (INCK)

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
INCK clock frequency	f _{INCK}	$f_{INCK} \times 0.96$	f _{INCK}	f _{INCK} × 1.02	MHz	f _{INCK} = 37.125 MHz, 74.25 MHz
INCK Low level pulse width	t _{WLINCK}	4	_	_	ns	f _{INCK} = 37.125 MHz, 74.25 MHz
INCK High level pulse width	t _{WHINCK}	4	_	_	ns	f _{INCK} = 37.125 MHz, 74.25 MHz
INCK clock duty	_	45.0	50.0	55.0	%	Define with 0.5 × OV _{DD}
INCK Rise time	Tr_inck	_	_	5	ns	20 % to 80 %
INCK Fall time	Tf_inck		_	5	ns	80 % to 20 %

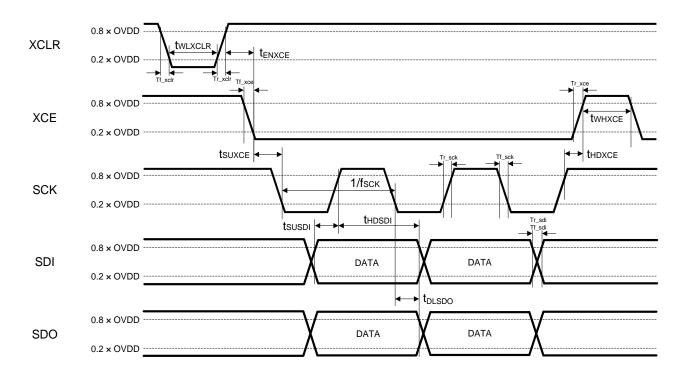
^{*}The INCK fluctuation affects the frame rate.

XVS / XHS Input Characteristics In Slave Mode (XMASTER pin = High)

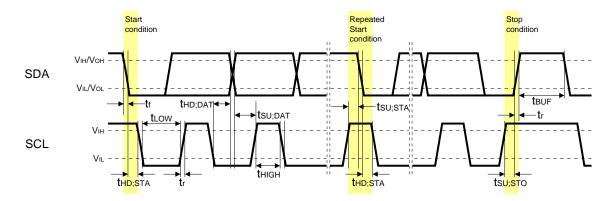
Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
XHS Low level pulse width	t _{WLXHS}	4 / f _{INCK}			ns	
XHS High level pulse width	t _{WHXHS}	4 / f _{INCK}			ns	
XVS - XHS fall width	t _{HFDLY}	1 / f _{INCK}	_	_	ns	
XHS - XVS rise width	t _{VRDLY}	1 / f _{INCK}	_	_	ns	
XVS Rise time	Tr_xvs	_		5	ns	20 % to 80 %
XVS Fall time	Tf_xvs	_	_	5	ns	80 % to 20 %
XHS Rise time	Tr_xhs	_		5	ns	20 % to 80 %
XHS Fall time	Tf_xhs	_		5	ns	80 % to 20 %

XVS / XHS Input Characteristics In Master Mode (XMASTER pin = Low, CMOS Output)

Be sure to detect sync code to detect the start of effective pixels in 1 line.


For the output waveforms in master mode, see the item of "Slave Mode and Master Mode"

^{*} XVS and XHS cannot be used for the sync signal to pixels.

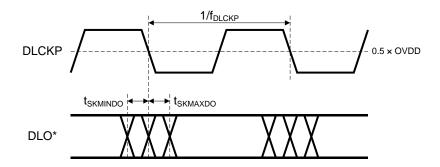

Serial Communication

4-wire

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
SCK clock frequency	f _{SCK}	_	_	13.5	MHz	
XCLR Low level pulse width	twlxclr	4 / f _{INCK}	_	_	ns	
XCE effective margin	t _{ENXCE}	20	ı	_	μs	
XCE input set-up time	t _{SUXCE}	20	1	_	ns	
XCE input hold time	t _{HDXCE}	20	_	_	ns	
XCE High level pulse width	t _{WHXCE}	20	ı	_	ns	
SDI input set-up time	t _{SUSDI}	10	l	_	ns	
SDI input hold time	t _{HDSDI}	10	_	_	ns	
SDO output delay time	t _{DLSDO}	0	_	25	ns	Output load capacitance: 20 pF
XCLR Rise time	Tr_xclr	_	1	5	ns	20 % to 80 %
XCLR Fall time	Tf_xclr	_	1	5	ns	80 % to 20 %
XCE Rise time	Tr_xce	_	_	5	ns	20 % to 80 %
XCE Fall time	Tf_xce	_		5	ns	80 % to 20 %
SCK Rise time	Tr_sck	_	_	5	ns	20 % to 80 %
SCK Fall time	Tf_sck	_		5	ns	80 % to 20 %
SDI Rise time	Tr_sdi	_	_	5	ns	20 % to 80 %
SDI Fall time	Tf_sdi	_	_	5	ns	80 % to 20 %

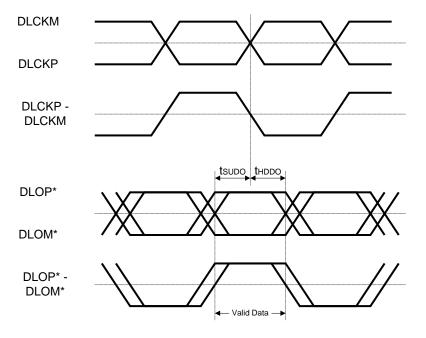
 I^2C

I²C Specification


Item	Symbol	Min.	Тур.	Max.	Unit	条件
Low level input voltage	VIL	-0.3	_	0.3 × OV _{DD}	V	
High level input voltage	VIH	$0.7 \times OV_{DD}$	_	1.9	V	
Low level input voltage	VOL	0	_	0.2 × OV _{DD}	V	OVDD < 2 V, Sink 3 mA
High level input voltage	VOH	$0.8 \times OV_{DD}$	_	_	V	
Output fall time	tof		_	250	ns	Load 10 pF – 400 pF, 0.7 × OV _{DD} – 0.3 × OV _{DD}
Input current	li	-10	-	10	μΑ	$0.1 \times OV_{DD} - 0.9 \times OV_{DD}$
Capacitance for SCK (SCL) /SDI (SDA)	Ci	_	_	10	pF	

I²C AC Characteristics

Item	Symbol	Min.	Тур.	Max.	Unit
SCL clock frequency	f _{SCL}	0	_	400	kHz
Hold time (Start Condition)	t _{HD;STA}	0.6	_	_	μs
Low period of the SCL clock	t _{LOW}	1.3		1	μs
High period of the SCL clock	t _{HIGH}	0.6	1	1	μs
Set-up time (Repeated Start Condition)	t _{SU;STA}	0.6		ı	μs
Data hold time	t _{HD;DAT}	0		0.9	μs
Data set-up time	t _{SU;DAT}	100		1	ns
Rise time of both SDA and SCL signals	tr			300	ns
Fall time of both SDA and SCL signals	t _f			300	ns
Set-up time (Stop Condition)	t _{SU;STO}	0.6			μs
Bus free time between a STOP and START Condition	t _{BUF}	1.3	_	_	μs


DLCKP / DLCKM, DLOP / DLOM

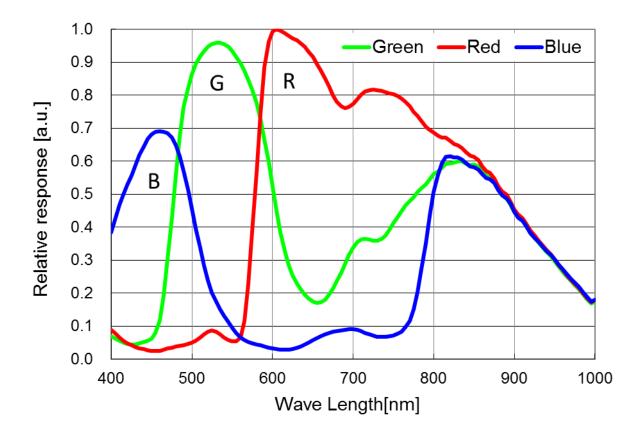
CMOS Outputs

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
DLCKP frequency	f _{DLCKP}			74.25	MHz	
DLCKP clock duty	_	40	50	60	%	
DLCKP - DLO skew Max.	t _{SKMAXDO}	_	_	2	ns	Output load capacitance: 20 pF
DLCKP - DLO skew Min.	t _{SKMINDO}	_	_	2	ns	Output load capacitance: 20 pF

Low Voltage LVDS DDR Output

(Output load capacitance: 8 pF)

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
DLCKP/DLCKM clock duty	_	40	50	60	%	DLCK = 297 MHz (Max.)
DLO set-up time	t _{SUDO}	400	_	_	ps	Data Rate 297 MHz DDR
DLO hold time	t _{HDDO}	400	_	_	ps	Data Rate 297 MHz DDR


I/O Equivalent Circuit Diagram

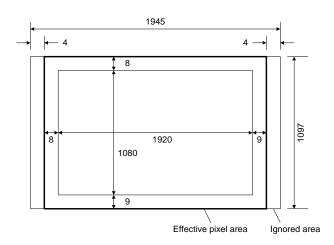
□: External pin

L: External pii			T
Symbol	Equivalent circuit	Symbol	Equivalent circuit
OMODE TENABLE	Digital input VSSLSC	XVS XHS	Digital I/O VSSLSC
XMASTER XCE	Digital input VSSLSC	SDO TOUT	Digital output VSSLSC
XCLR INCK	Digital input VSSLSC	XTRIG	Digital Input VSSLSC
SDI SCK	Digital input vsslsc	VRLFR VRLST	Analog I/O VSSHPX
VLOADLM VBGR TAMON	Analog I/O VSSHPX	DLOxP DLOxN DLCKP DLCKN	VDDMIF VDDMIF DLOPX DLCKP VSSMIF VDDMIF VDDMIF DLOMX VSSMIF VDDMIF VDD
DMOPX DMOMX DMCKP DMCKM	VDDLIF VDDLIF DMOPX DMCKP VSSLIF VDDLIF V		

Spectral Sensitivity Characteristics

(Excludes lens characteristics and light source characteristics.)

Image Sensor Characteristics


 $(AV_{DD} = 2.9 \text{ V}, OV_{DD} = 1.8 \text{ V}, DV_{DD} = 1.2 \text{ V}, Tj = 60 ^{\circ}C, All-pixel scan mode, 12 bit 30 frame/s, Gain: 0 dB)$

Item		Symbol	Min.	Тур.	Max.	Unit	Measurement method	Remarks
G sensitivity		S	4663 (1105)	5486 (1300)	_	Digit (mV)	1	1/30 s storage 12 bit converted value HCG mode
G Sensitivity		3	2332 (553)	2743 (650)	-	Digit (mV)	1	1/30 s storage 12 bit converted value LCG mode
Sensitivity	R/G	RG	0.45	_	0.60	_	2	
ratio	B/G	BG	0.32	_	0.47	_	2	_
Saturation sign	nal	Vsat	3852 (913)	1	1	Digit (mV)	3	12 bit converted value LCG mode
Video signal sl	Video signal shading		_	_	25	%	4	_
Vertical line		VL			90	μV	5	12 bit converted value LCG mode
Dark signal		Vdt	_	I	0.63 (0.15)	Digit (mV)	6	1/30 s storage 12 bit converted value LCG mode
Dark signal shading		ΔVdt	_	_	0.63 (0.15)	Digit (mV)	7	1/30 s storage 12 bit converted value LCG mode
Conversion efficiency ratio		Rcg	1.8	2	2.2	_	_	HCG mode / LCG mode

Note)

- 1. Converted value into mV using 1Digit = 0.2370 mV for 12-bit output and 1Digit = 0.9479 mV for 10-bit output.
- 2. The video signal shading is the measured value in the wafer status (including color filter) and does not include characteristics of the seal glass.
- 3. The characteristics above apply to effective pixel area that is shown below.

Zone Definition

Image Sensor Characteristics Measurement Method

Measurement Conditions

1. In the following measurements, the device drive conditions are at the typical values of the bias conditions and clock voltage conditions.

2. In the following measurements, spot pixels are excluded and, unless otherwise specified, the optical black (OB) level is used as the reference for the signal output, which is taken as the value of the Gr / Gb channel signal output or the R / B channel signal output of the measurement system.

Color Coding of Physical Pixel Array

The primary color filters of this image sensor are arranged in the layout shown in the figure below. Gr and Gb represent the G signal on the same line as the R and B signals, respectively. The Gb signal and B signal lines and the R signal and Gr signal lines are output successively.

Gb	В	Gb	В
R	Gr	R	Gr
Gb	В	Gb	В
R	Gr	R	Gr

Color Coding Diagram

Definition of standard imaging conditions

◆ Standard imaging condition I:

Use a pattern box (luminance: 706 cd/m^2 , color temperature of 3200 K halogen source) as a subject. (Pattern for evaluation is not applicable.) Use a testing standard lens with CM500S (t = 1.0 mm) as an IR cut filter and image at F5.6. The luminous intensity to the sensor receiving surface at this point is defined as the standard sensitivity testing luminous intensity.

Standard imaging condition II:

Image a light source (color temperature of 3200 K) with a uniformity of brightness within 2 % at all angles. Use a testing standard lens with CM500S (t = 1.0 mm) as an IR cut filter. The luminous intensity is adjusted to the value indicated in each testing item by the lens diaphragm.

◆ Standard imaging condition III:

Image a light source (color temperature of 3200 K) with a uniformity of brightness within 2 % at all angles. Use a testing standard lens (exit pupil distance - 30 mm) with CM500S (t = 1.0 mm) as an IR cut filter. The luminous intensity is adjusted to the value indicated in each testing item by the lens diaphragm.

Measurement Method

1. Sensitivity

Set the measurement condition to the standard imaging condition I. After setting the electronic shutter mode with a shutter speed of 1/100 s, measure the Gr and Gb signal outputs (VGr, VGb) at the center of the screen, and substitute the values into the following formula.

$$Sg = (VGr + VGb) / 2 \times 100/30 [mV]$$

2. Sensitivity ratio

Set the measurement condition to the standard imaging condition II. After adjusting the average value of the Gr and Gb signal outputs to 650 mV, measure the R signal output (VR [mV]), the Gr and Gb signal outputs (VGr, VGb [mV]) and the B signal output (VB [mV]) at the center of the screen in frame readout mode, and substitute the values into the following formulas.

Saturation signa I

Set the measurement condition to the standard imaging condition II. After adjusting the luminous intensity to 20 times the intensity with the average value of the Gr and Gb signal outputs, 650 mV, measure the average values of the Gr, Gb, R and B signal outputs.

4. Video signal shading

Set the measurement condition to the standard imaging condition III. With the lens diaphragm at F2.8, adjust the luminous intensity so that the average value of the Gr and Gb signal outputs is 650 mV. Then measure the maximum value (Gmax [mV]) and the minimum value (Gmin [mV]) of the Gr and Gb signal outputs, and substitute the values into the following formula.

$$SH = (Gmax - Gmin) / 650 \times 100 [\%]$$

5. Vertical Line

With the device junction temperature of 60 $^{\circ}$ C and the device in the light-obstructed state, calculates each average output of Gr, Gb, R and B on respective columns. Calculates maximum value of difference with adjacent column on the same color (VL [μ V]).

6. Dark signal

With the device junction temperature of 60 °C and the device in the light-obstructed state, divide the output difference between 1/30 s integration and 1/300 s integration by 0.9, and calculate the signal output converted to 1/30 s integration. Measure the average value of this output (Vdt [mV]).

7. Dark signal shading

After the measurement item 5, measure the maximum value (Vdmax [mV]) and the minimum value (Vdmin [mV]) of the dark signal output, and substitute the values into the following formula.

$$\Delta Vdt = Vdmax - Vdmin [mV]$$

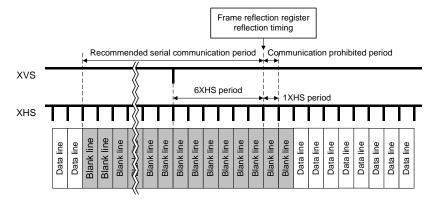
Setting Registers Using Serial Communication

This sensor can write and read the setting values of the various registers shown in the Register Map by 4-wire serial communication and I^2C communication. See the Register Map for the addresses and setting values to be set. Because the two communication systems are judged at the first communication, once they are judged, the communication cannot be switched until sensor reset. The pin for 4-wire serial communication and I^2C communication is shared, so the external pin XCE must be fixed to power supply side when using I^2C communication.

Description of Setting Registers (4-wire)

The serial data input order is LSB-first transfer. The table below shows the various data types and descriptions.

Serial Data Transfer Order


Chip ID	Start address	Data	Data	Data	
(8 bit)	(8 bit)	(8 bit)	(8 bit)	(8 bit)	(8 bit)

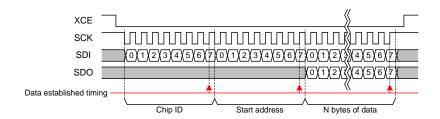
Type and Description

Туре	Description						
Chip ID	02h: Write to the Chip ID = 02h register 03h: Write to the Chip ID = 03h register 04h: Write to the Chip ID = 04h register 05h: Write to the Chip ID = 05h register 06h: Write to the Chip ID = 06h register 82h: Read from the Chip ID = 02h register 83h: Read from the Chip ID = 03h register 84h: Read from the Chip ID = 04h register 85h: Read from the Chip ID = 05h register 86h: Read from the Chip ID = 06h register						
Address	Designate the address according to the Register Map. When using a communication method that designates continuous addresses, the address is automatically incremented from the previously transmitted address.						
Data	Input the setting values according to the Register Map.						

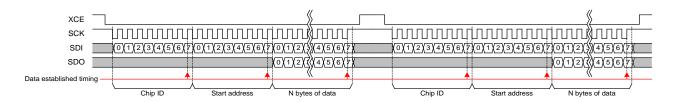
Register Communication Timing (4-wire)

Perform serial communication in sensor standby mode or within in the 6XHS period after the falling edge of XVS from the blanking line output start time after valid line of one frame is finished. For the registers marked "V" in the item of Reflection timing, when the communication is performed in the communication period shown in the figure below they are reflected by frame reflection timing. For the registers noted "Immediately" in the item of Reflection timing, the settings are reflected when the communication is performed. (For the immediate reflection registers other than STANDBY, REGHOLD, XMSTA, SW_RESET, XVSOUTSEL [1:0] and XHSOUTSEL [1:0], set them in sensor standby state.)

Register Write and Read (4-wire)

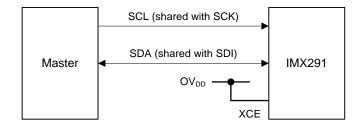

Follow the communication procedure below when writing registers.

- 1. Set XCE Low to enable the chip's communication function. Serial data input is executed using SCK and SDI.
- 2. Transmit data in sync with SCK 1 bit at a time from the LSB using SDI. Transfer SDI in sync with the falling edge of SCK. (The data is loaded at the rising edge of SCK.)
- 3. Input Chip ID (CID = 02h or 03h or 04h or 05h or 06h) to the first byte. If the Chip ID differs, subsequent data is ignored.
- 4. Input the start address to the second byte. The address is automatically incremented.
- 5. Input the data to the third and subsequent bytes. The data in the third byte is written to the register address designated by the second byte, and the register address is automatically incremented thereafter when writing the data for the fourth and subsequent bytes. Normal register data is loaded to the inside of the sensor and established in 8-bit units.
- 6. The register values starting from the register address designated by the second byte are output from the SDO pin. The register values before the write operation are output. The actual register values are the input data.
- 7. Set XCE High to end communication.


Follow the communication procedure below when reading registers.

- 1. Set XCE Low to enable the chip's communication function. Serial data input is executed using SCK and SDI.
- 2. Transmit data in sync with SCK 1 bit at a time from the LSB using SDI. Transfer SDI in sync with the falling edge of SCK. (The data is loaded at the rising edge of SCK.)
- 3. Input Chip ID (CID = 82h or 83h or 84h or 85h or 86h) to the first byte. If the Chip ID differs, subsequent data is ignored.
- 4. Input the start address to the second byte. The address is automatically incremented.
- 5. Input data to the third and subsequent bytes. Input dummy data in order to read the registers. The dummy data is not written to the registers. To read continuous data, input the necessary number of bytes of dummy data.
- 6. The register values starting from the register address designated by the second byte are output from the SDO pin. The input data is not written, so the actual register values are output.
- 7. Set XCE High to end communication.

Note) When writing data to multiple registers with discontinuous addresses, access to undesired registers can be avoided by repeating the above procedure multiple times.


Serial Communication (Continuous Address)

Serial Communication (Discontinuous Address)

Description of Setting Registers (I²C)

The serial data input order is MSB-first transfer. The table below shows the various data types and descriptions.

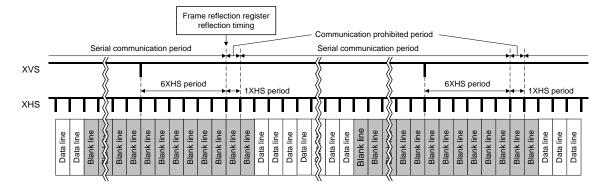
Pin connection of serial communication

SLAVE Address

MSB							LSB
0	0	1	1	0	1	0	R/W

^{*} R/W is data direction bit

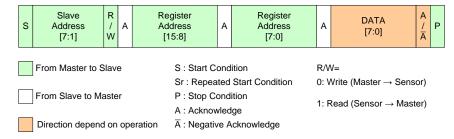
R/W


R/W bit	Data direction
0	Write (Master → Sensor)
1	Read (Sensor → Master)

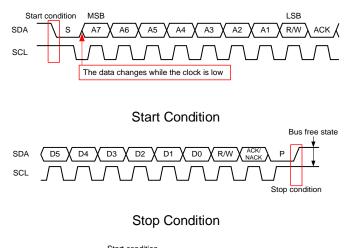
I²C pin description

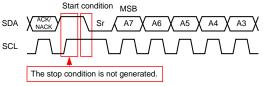
Symbol	Pin No.	Remarks
SCL (Common to SCK)	G10	Serial clock input
SDA (Common to SDI)	H10	Serial data communication

Register Communication Timing (I²C)

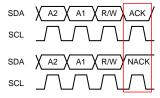

In I²C communication system, communication can be performed excluding during the period when communication is prohibited from the falling edge of XVS to 6H after (1H period). For the registers marked "V" in the item of Reflection timing, when the communication is performed in the communication period shown in the figure below they are reflected by frame reflection timing. For the registers noted "Immediately" in the item of Reflection timing, the settings are reflected when the communication is performed. (For the immediate reflection registers other than STANDBY, REGHOLD, XMSTA, SW_RESET, XVSOUTSEL [1:0] and XHSOUTSEL [1:0], set them in sensor standby state.) Using REG_HOLD function is recommended for register setting using I²C communication. For REG_HOLD function, see "Register Transmission Setting" in "Description of Functions".

SONY IMX291LQR-C


Communication Protocol

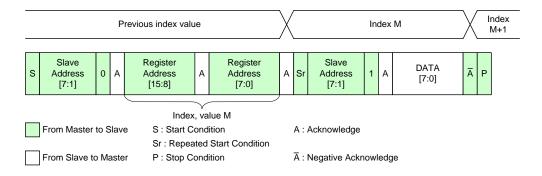

I²C serial communication supports a 16-bit register address and 8-bit data message type.

Communication Protocol


Data is transferred serially, MSB first in 8-bit units. After each data byte is transferred, A (Acknowledge) / A (Negative Acknowledge) is transferred. Data (SDA) is transferred at the clock (SDL) cycle. SDA can change only while SCL is Low, so the SDA value must be held while SCL is High. The Start condition is defined by SDA changing from High to Low while SCL is High. When the Stop condition is not generated in the previous communication phase and Start condition for the next communication is generated, that Start condition is recognized as a Repeated Start condition.

Repeated Start Condition

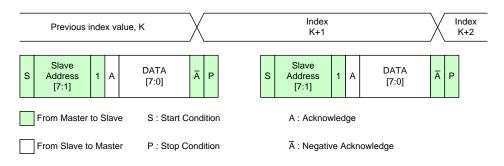
After transfer of each data byte, the Master or the sensor transmits an Acknowledge / Negative Acknowledge and release (does not drive) SDA. When Negative Acknowledge is generated, the Master must immediately generate the Stop Condition and end the communication.


Acknowledge and Negative Acknowledge

Register Write and Read (I²C)

This sensor corresponds to four reed modes and the two write modes.

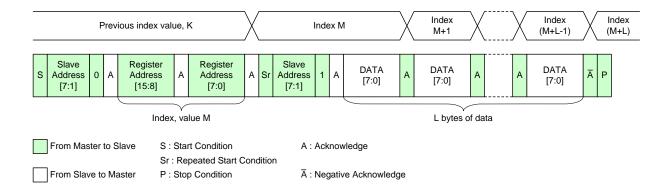
Single Read from Random Location


The sensor has an index function that indicates which address it is focusing on. In reading the data at an optional single address, the Master must set the index value to the address to be read. For this purpose it performs dummy write operation up to the register address. The upper level of the figure below shows the sensor internal index value, and the lower level of the figure shows the SDA I/O data flow. The Master sets the sensor index value to M by designating the sensor slave address with a write request, then designating the address (M). Then, the Master generates the start condition. The Start Condition is generated without generating the Stop Condition, so it becomes the Repeated Start Condition. Next, when the Master sends the slave address with a read request, the sensor outputs an Acknowledge immediately followed by the index address data on SDA. After the Master receives the data, it generates a Negative Acknowledge and the Stop Condition to end the communication

Single Read from Random Location

Single Read from Current Location

After the slave address is transmitted by a write request, that address is designated by the next communication and the index holds that value. In addition, when data read/write is performed, the index is incremented by the subsequent Acknowledge/Negative Acknowledge timing. When the index value is known to indicate the address to be read, sending the slave address with a read request allows the data to be read immediately after Acknowledge. After receiving the data, the Master generates a Negative Acknowledge and the Stop Condition to end the communication, but the index value is incremented, so the data at the next address can be read by sending the slave address with a read request.



Single Read from Current Location

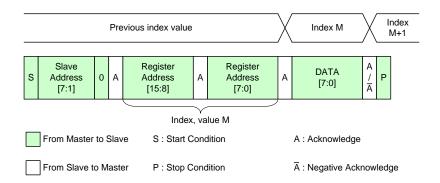
Sequential Read Starting from Random Location


In reading data sequentially, which is starting from an optional address, the Master must set the index value to the start of the addresses to be read. For this purpose, dummy write operation includes the register address setting. The Master sets the sensor index value to M by designating the sensor slave address with a read request, then designating the address (M). Then, the Master generates the Repeated Start Condition. Next, when the Master sends the slave address with a read request, the sensor outputs an Acknowledge followed immediately by the index address data on SDA. When the Master outputs an Acknowledge after it receives the data, the index value inside the sensor is incremented and the data at the next address is output on SDA. This allows the Master to read data sequentially. After reading the necessary data, the Master generates a Negative Acknowledge and the Stop Condition to end the communication.

Sequential Read Starting from Random Location

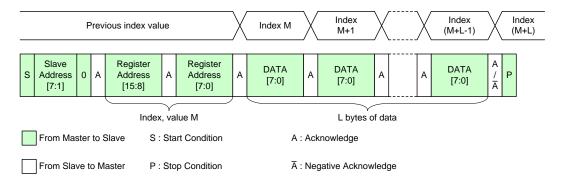
Sequential Read Starting from Current Location

When the index value is known to indicate the address to be read, sending the slave address with a read request allows the data to be read immediately after the Acknowledge. When the Master outputs an Acknowledge after it receives the data, the index value inside the sensor is incremented and the data at the next address is output on SDA. This allows the Master to read data sequentially. After reading the necessary data, the Master generates a Negative Acknowledge and the Stop Condition to end the communication.



Sequential Read Starting from Current Location

Single Write to Random Location


The Master sets the sensor index value to M by designating the sensor slave address with a write request, and designating the address (M). After that the Master can write the value in the designated register by transmitting the data to be written. After writing the necessary data, the Master generates the Stop Condition to end the communication.

Single Write to Random Location

Sequential Write Starting from Random Location

The Master can write a value to register address M by designating the sensor slave address with a write request, designating the address (M), and then transmitting the data to be written. After the sensor receives the write data, it outputs an Acknowledge and at the same time increments the register address, so the Master can write to the next address simply by continuing to transmit data. After the Master writes the necessary number of bytes, it generates the Stop Condition to end the communication.

Sequential Write Starting from Random Location

Register Map

This sensor has a total of 1280 bytes (256×5) of registers, composed of registers with addresses 00h to FFh that correspond to Chip ID = 02h (write mode) / 82h (read mode), Chip ID = 03h (write mode) / 83h (read mode), Chip ID = 04h (write mode) / 84h (read mode), Chip ID = 05h (write mode) / 85h (read mode), and Chip ID = 06h (write mode) / 86h (read mode). Use the initial values for empty address. Some registers must be change from the initial values, so the sensor control side should be capable of setting 1280 bytes.

The values must be changed from the default value, so initial setting after reset is required after power-on. There are two different register reflection timing. Values are reflected immediately after writing to register noted as "Immediately", or at the frame reflection register reflection timing described in the item of "Register Communication Timing" in the section of "Setting Registers with Serial Communication" for registers noted as "V" in the Reflection timing column of the Register Map. For the immediate reflection registers other than belows, set them in sensor standby state.

STANDBY REGHOLD XMSTA SW_RESET XVSOUTSEL [1:0] XHSOUTSEL [1:0]

Do not perform communication to addresses not listed in the Register Map. Doing so may result in operation errors. However, other registers that requires communication to address not listed above may be added, so addresses up to FFh should be supported for CID = 02h, 03h, 04h, 05h and 06h. (In I^2 C communication, address; 3000h to 30FFh, 3100h to 31FFh, 3200h to 32FFh, 3300h to 33FFh, 3400h to 34FFh)

For the register that is writing " * " to the setting value in description (Indicated by red letter), change the value from the default value after the reset.

(1) Registers corresponding to Chip ID = 02h in Write mode. (Read: Chip ID = 82h)

Address		1. **	Register	2	Default value after reset		Reflection	
1 14000	I ² C	bit	name	Description	Ву	Ву	timing	
4-wire	10				register	address		
00h	3000h	0	STANDBY	Standby 0: Operating 1: Standby	1h	01h	Immediately	
		1		Fixed to "0h"	0h		_	
		2		Fixed to "0h"	0h		_	
		3		Fixed to "0h"	0h		_	
		4		Fixed to "0h"	0h		_	
		5		Fixed to "0h"	0h		_	
		6		Fixed to "0h"	0h		_	
		7		Fixed to "0h"	0h		_	
		0	REGHOLD	Register hold (Function not to update V reflection register) 0: Invalid 1: Valid	0h		Immediately	
		1		Fixed to "0h"	0h			
01h	3001h	2		Fixed to "0h"	0h	00h	_	
		3		Fixed to "0h"	0h		_	
		4		Fixed to "0h"	0h		_	
		5		Fixed to "0h"	0h		_	
		6		Fixed to "0h"	0h		_	
		7		Fixed to "0h"	0h		_	
	3002h	0	XMSTA	Setting of master mode operation 0: Master mode operation start 1: Master mode operation stop	1h	01h	Immediately	
		1		Fixed to "0h"	0h		_	
02h		2		Fixed to "0h"	0h		_	
		3		Fixed to "0h"	0h		_	
		4		Fixed to "0h"	0h		_	
		5		Fixed to "0h"	0h		_	
		6		Fixed to "0h"	0h		_	
		7		Fixed to "0h"	0h		_	
03h	3003h	0	SW_RESET	Software reset 0: Operating 1: Reset	0h	00h	Immediately	
		1		Fixed to "0h"	0h		_	
		2		Fixed to "0h"	0h		_	
		3		Fixed to "0h"	0h		_	
		4		Fixed to "0h"	0h		_	
		5		Fixed to "0h"	0h		_	
		6		Fixed to "0h"	0h		_	
		7		Fixed to "0h"	0h		_	
04h	3004h	[7:0]		Fixed to "10h"	10h	10h	_	

Address			Register		Default value after reset		Reflection
	I ² C	bit	name	Description	Ву	Ву	timing
4-wire					register	address	
05h	3005h	0	ADBIT	AD conversion bits setting	1h	01h	V
				0: 10 bit, 1: 12 bit	'''		·
		1	_	Fixed to "0h"	0h		_
		2	_	Fixed to "0h"	0h		_
		3	_	Fixed to "0h"	0h		
		4	_	Fixed to "0h"	0h		_
		5	_	Fixed to "0h"	0h		_
		6	_	Fixed to "0h"	0h		_
		7	_	Fixed to "0h"	0h		_
06h	3006h	[7:0]	_	Fixed to "00h"	00h	00h	V
		0	VREVERSE	Vertical (V) direction	0h	00h	
	3007h			readout inversion control			V
				0: Normal, 1: Inverted			
		1	HREVERSE	Horizontal (H) direction	0h		
				readout inversion control			V
				0: Normal, 1: Inverted			
		2	_	Fixed to "0h"	0h		_
07h		3	_	Fixed to "0h"	0h		_
		4 5	WINMODE [2:0]	Window mode setting	Oh		
				0: Full HD1080p			
				1: HD720p			V
		6		4: Window cropping from Full HD 1080p			
				Others: Setting prohibited			
		7	_	Fixed to "0h"	0h		_
08h	3008h	[7:0]	_	Fixed to "A0h"	A0h	A0h	_
	3009h	0	-FRSEL [1:0]	Frame rate (Data rate) setting	2h	02h	
				For details, see the register setting			V
09h				list in each operation mode.			V
		2	_	Fixed to "0h"	0h		
		3	_	Fixed to "0h"	0h		
0311		4	FDG_SEL	Conversion gain switching		UZII	
				0: LCG Mode	0h		V
				1: HCG Mode			
		5	_	Fixed to "0h"	0h		_
		6	_	Fixed to "0h"	0h		_
		7	_	Fixed to "0h"	0h		_

Add	Iress		Register			t value reset	Reflection
	0	bit	name	Description	By	Ву	timing
4-wire	I ² C		name		register	address	uning
		0		LSB			
		1					
		2					
0.4.6	20046	3				E0l-	
0Ah	300Ah	4	BLKLEVEL [8:0]	Black level offset value setting	0F0h	F0h	V
		5					
		6					
		7					
		0		MSB			
		1	_	Fixed to "0h"	0h		_
		2	_	Fixed to "0h"	0h		_
ODL	2000	3	_	Fixed to "0h"	0h	00h	_
0Bh	300Bh	4	_	Fixed to "0h"	0h	OUN	_
		5	_	Fixed to "0h"	0h		_
		6	_	Fixed to "0h"	0h		_
		7	_	Fixed to "0h"	0h		_
0Ch	300Ch	[7:0]	_	Fixed to "00h"	00h	00h	_
0Dh	300Dh	[7:0]	_	Fixed to "00h"	00h	00h	_
0Eh	300Eh	[7:0]	_	Fixed to "01h"	01h	01h	l
0Fh	300Fh	[7:0]	_	Set to "00h" *	01h	01h	l
10h	3010h	[7:0]	_	Set to "21h" *	01h	01h	l
11h	3011h	[7:0]	_	Fixed to "00h"	00h	00h	_
12h	3012h	[7:0]	_	Set to "64h" *	F0h	F0h	l
13h	3013h	[7:0]	_	Set to "00h"	00h	00h	l
		0		LSB			
		1					
		2					
l		3		Gain setting	0.01	0.01	
14h	3014h	4	GAIN [7:0]	(0.0 dB to 72.0 dB / 0.3 dB step)	00h	00h	V
		5					
		6					
		7		MSB			
15h	3015h	[7:0]	_	Fixed to "00h"	00h	00h	_
16h	3016h	[7:0]	_	Set to "09h"	08h	08h	_
17h	3017h	[7:0]	_	Fixed to "00h"	00h	00h	_

Add	Iress		Register			t value reset	Reflection
4-wire	I ² C	bit	name	Description	By register	By address	timing
		0		LSB			
		1					
		2					
401	00401	3				CEL	
18h	3018h	4	4			65h	
		5					
		6		When sensor master mode vertical			
		7		span setting.			
		0	\/NAA \/ [47:0]	(Number of operation lines count from 1) For details, see the item of	0465h		V
		1	VMAX [17:0]	"Slave Mode and Master Mode"	040311		V
		2		in the section of			
19h	3019h	3		"Description of Various Functions"		04h	
1911	30 1911	4		Description of various randitions		0411	
		5					
		6					
		7					
		0					
		1		MSB			
	301Ah	2	_	Fixed to "0h"	0h		_
1Ah		3	_	Fixed to "0h"	0h	00h	_
17.11		4	_	Fixed to "0h"	0h	0011	_
		5	_	Fixed to "0h"	0h		_
		6	_	Fixed to "0h"	0h		_
		7	_	Fixed to "0h"	0h		_
1Bh	301Bh	[7:0]	_	Fixed to "00h"	00h	00h	
		0		LSB			
		1					
		2					
1Ch	301Ch	3				30h	
		4		When sensor master mode			
		5		horizontal span setting.			
		6		(Number of operation clocks count from 1)			
		7	HMAX [15:0]	For details, see the item of	1130h		V
		0		"Slave Mode and Master Mode			
		1		" in the section of "Description of			
		2		Various Functions"			
1Dh	301Dh	3				11h	
		5					
		6 7		MSB			
1Eh	301Eh	[7:0]		Fixed to "B2h"	B2h	B2h	
1Fh				Fixed to 6211 Fixed to "01h"	01h	01h	_
ICII	JUTEII	[1.0]	_	I IVOG 10 O III	VIII	UIII	_

Add	Iress		Register	D info		t value reset	Reflection
4-wire	I ² C	bit	name	Description	By register	By address	timing
		0		LSB			
		1					
		2					
20h	3020h	3				00h	
2011	002011	4				0011	
		5					
		6	-				
		7		Ctana and time and invature and			
		1	SHS1 [17:0]	Storage time adjustment Designated in line units.	00000h		V
		2		Designated in line units.			
		3					
21h	3021h	4				00h	
		5					
		6					
		7					
		0					
		1		MSB			
		2	_	Fixed to "0h"	0h		_
22h	3022h	3	_	Fixed to "0h"	0h	00h	
	0022	4	_	Fixed to "0h"	0h	00	_
		5	_	Fixed to "0h"	0h		
		6 7	_	Fixed to "0h"	0h 0h		_
23h	3023h	[7:0]	_	Fixed to "0h"	Un		_
to	to	to		Reserved	_	_	_
39h	3039h	[7:0]					
		0		LSB			
		1		In window cropping mode			
		2	WINWV_OB [3:0]	Cropping size designation	Ch		
				(Vertical direction effective OB)			
3Ah	303Ah	3		MSB	-	0Ch	V
		4	_	Fixed to "0h"	0h		
		5	_	Fixed to "0h"	0h		
		6 7	_	Fixed to "0h" Fixed to "0h"	0h 0h		
3Bh	303Bh	[7:0]	_	Fixed to '01'	00h	00h	_
ODII	OOODII	0		LSB	0011	0011	
		1					
		2					
001	00001	3				0.01-	
3Ch	303Ch	4		In window cropping mode		00h	
		5	WINPV [10:0]	Designation of upper left coordinate for	000h		V
		6		cropping position (Vertical position)			
		7					
		0					
		1		luon.			
		2		MSB	Ol-		
3Dh	303Dh	3	_	Fixed to "0h"	0h	00h	
		4	_	Fixed to "0h"	0h		_
		5 6	_	Fixed to "0h" Fixed to "0h"	0h 0h		
		7		Fixed to "Un"	Oh		
		′	_	I IVER IO OII	UII	L	_

Add	Iress		Register	December 2		t value reset	Reflection
4-wire	I ² C	bit	name	Description	By register	By address	timing
3Eh	303Eh	0 1 2 3 4 5 6 7 0	WINWV [10:0]	LSB In window cropping mode Cropping size designation (Vertical direction	449h	49h	V
3Fh	303Fh	2 3 4 5 6	- - - -	MSB Fixed to "0h"	Oh Oh Oh Oh Oh	04h	
40h	3040h	0 1 2 3 4 5 6	WINPH [10:0]	In window cropping mode Designation of upper left coordinate for cropping position (horizontal position) Set to become the multiple of four	000h	00h	V
41h	3041h	0 1 2 3 4 5 6		MSB Fixed to "0h"	Oh Oh Oh Oh Oh	00h	
42h	3042h	0 1 2 3 4 5 6	— WINWH [10:0]	In window cropping mode Cropping size designation (horizontal direction) Set to become the multiple of four	79Ch	9Ch	V
43h	3043h	0 1 2 3 4 5 6 7	- - - -	MSB Fixed to "0h"	Oh Oh Oh Oh	07h	
44h to 45h	3044h to 3045h	[7:0] to [7:0]	_	Reserved	_	_	_

Add	Iress		Register			t value reset	Reflection
		bit	name	Description	By		timing
4-wire	I ² C		name		register	By address	uning
				Number of output bit setting			
		0	ODBIT	0: 10 bit, 1: 12 bit	1h		les es a di ataly
		U	ODBIT	* In CSI-2 mode (OMODE = Low),	111		Immediately
				Fixed to "1h".			
		1	_	Fixed to "0h"	0h		_
		2	_	Fixed to "0h"	0h		_
		3	_	Fixed to "0h"	0h		_
46h	3046h	4		Output interface selection		01h	
		4		(In CSI-2, don't care. CSI-2 Interface			
		_		will be selected by Chip ID: 06h register.)			
		5		0h: Parallel CMOS SDR	01		
		_	OPORTSEL [3:0]	Dh: LVDS 2 ch	0h		Immediately
		6		Eh: LVDS 4 ch			
		_		Fh: LVDS 8 ch			
		7		Others: Setting prohibited			
47h	3047h	[7:0]	_	Fixed to "01h"	01h	01h	_
		0	_	Fixed to "0h"	0h	_	_
		1	_	Fixed to "0h"	0h		_
		2	_	Fixed to "0h"	0h		_
		3	_	Fixed to "0h"	0h		_
48h	3048h			XVS pulse width setting in master mode.	011	00h	
1011	00 1011	4	XVSLNG [1:0]	(In slave mode, setting is invalid.)	0h	0011	Immediately
		5	XV 0 L (0 [1 . 0]	0: 1H, 1: 2H, 2: 4H, 3: 8H	011		ininicalatory
		6	_	Fixed to "0h"	0h		_
		7	_	Fixed to "0h"	0h		_
		0	_	Fixed to "0h"	0h		_
		1	_	Fixed to "0h"	0h		
		2	_	Fixed to "0h"	0h		
		3		Fixed to "1h"	1h		
49h	3049h		_	XHS pulse width setting in master mode.	111	08h	
4911	304911	4	XHSLNG [1:0]	(In slave mode, setting is invalid.)	0h	0011	Immodiately
		5	ALISENG [1.0]	0: Min. to 3: Max.	OH		Immediately
		6		Fixed to "0h"	0h		
		7		Fixed to "0h"	0h		
4 A b	20.446		_		00h	00h	_
4Ah	304Ah	[7:0]	_	Fixed to "00h"	0011	0011	_
		0		XVS pin setting in master mode			
			XVSOUTSEL [1:0]	0: Fixed to High	0h		Immediately
		1		2: VSYNC output Others: Setting prohibited			
				· .			
		2		XHS pin setting in master mode			
4Bh	304Bh		XHSOUTSEL [1:0]	0: Fixed to High	0h	00h	Immediately
		3		2: HSYNC output			
				Others: Setting prohibited	Λh		
		4	_	Fixed to "0h"	0h		_
		5	_	Fixed to "0h"	0h		_
		6	_	Fixed to "0h"	0h		
		7	_	Fixed to "0h"	0h		_

Add	Iress		Register		Defaul after		Reflection
	2	bit	name	Description	By	By	timing
4-wire	I ² C				register	address	9
4Ch	304Ch	[7:0]			Ü		
to	to	to	_	Reserved	_	_	_
5Bh	305Bh	[7:0]					
5Ch	305Ch	[7:0]	INCKSEL1	The value is set according to INCK.	0Ch	0Ch	Immediately
5Dh	305Dh	[7:0]	INCKSEL2	The value is set according to INCK.	00h	00h	Immediately
5Eh	305Eh	[7:0]	INCKSEL3	The value is set according to INCK.	10h	10h	Immediately
5Fh	305Fh	[7:0]	INCKSEL4	The value is set according to INCK.	01h	01h	Immediately
60h	3060h	[7:0]					
to	to	to	_	Reserved	_	_	_
6Fh	306Fh	[7:0]					
70h	3070h	[7:0]	_	Set to "02h" *	01h	01h	_
71h	3071h	[7:0]	_	Set to "11h" *	00h	00h	_
72h	3072h	[7:0]					
to	to	to	_	Reserved	_	_	_
9Ah	309Ah	[7:0]					
9Bh	309Bh	[7:0]	_	Set to "10h" *	00h	00h	_
9Ch	309Ch	[7:0]	_	Set to "22h" *	20h	20h	_
9Dh	309Dh	[7:0]					
to	to	to	_	Reserved	_	_	_
A1h		[7:0]					
A2h	30A2h	[7:0]		Set to "02h" *	00h	00h	
A3h	30A3h	[7:0]					
to	to	to	_	Reserved	_	_	_
A5h	30A5h	[7:0]					
A6h	30A6h	[7:0]	_	Set to "20h" *	10h	10h	_
A7h	30A7h		_	Fixed to "00h"	00h	00h	_
A8h			_	Set to "20h" *	10h	10h	_
A9h	30A9h		_	Fixed to "00h"	00h	00h	_
AAh	30AAh		_	Set to "20h" *	10h	10h	_
ABh	30ABh		_	Fixed to "00h"	00h	00h	_
ACh	30ACh			Set to "20h" *	10h	10h	_
ADh	30ADh	[7:0]					
to	to	to	_	Reserved	_	_	_
AFh	30AFh						
B0h	30B0h	[7:0]	_	Set to "43h" *	41h	41h	
B1h	30B1h	[7:0]					
to	to	to	_	Reserved	_	_	_
FFh	30FFh	[7:0]					

(2) Registers corresponding to Chip ID = 03h in Write mode. (Read: Chip ID = 83h)

Add	dress		Register	Description		t value reset	Reflection
4-wire	I ² C	bit	name	Description	By register	By address	timing
00h to 18h	3100h to 3118h	to	_	Reserved	_	_	_
19h	3119h	[7:0]	_	Set to "9Eh" *	92h	92h	_
1Ah to 1Bh	311Ah to 311Bh	to	-	Reserved	_	_	_
1Ch	311Ch	[7:0]	_	Set to "1Eh" *	12h	12h	_
1Dh	311Dh	[7:0]	_	Fixed to "00h"	00h	00h	
1Eh	311Eh	[7:0]	_	Set to "08h" *	05h	05h	
1Fh to 27h	311Fh to 3127h	to	_	Reserved	_	_	_
28h	3128h	[7:0]	_	Set to "05h" *	07h	07h	_
29h			ADBIT1	The value is set according to AD conversion bits 10 bit: 1Dh 12 bit: 00h	00h	00h	_
2Ah to 3Ch	312Ah to 313Ch	to	_	Reserved	_	_	_
3Dh	313D	[7:0]	_	Set to "83h" *	80h	80h	
3Eh to 4Fh	313Eh to 314Fh	[7:0] to	_	Reserved	_	_	-
50h	3150h		_	Set to "03h" *	02h	02h	_
51h to 5Dh	3151h to 315Dh	to	_	Reserved	_	_	
5Eh			INCKSEL5	The value is set according to INCK. INCK = 74.25 MHz : 1Bh INCK = 37.125 MHz: 1Ah	1Bh	1Bh	Immediately
5Fh to 63h	315Fh to 3163h	to	-	Reserved	_	-	-
64h			INCKSEL6	The value is set according to INCK. INCK = 74.25 MHz : 1Bh INCK = 37.125 MHz: 1Ah	1Bh	1Bh	Immediately
65h to 7Bh	3165h to 317Bh	to	_	Reserved	_	_	_

SONY

Add	dress		Register	Description	Default value after reset		Reflection
4-wire	I ² C	bit	name	Description	By register	By address	timing
7Ch	317Ch	[7:0]	ADBIT2	The value is set according to AD conversion bits 10 bit: 12h 12 bit: 00h	17h	17h	_
7Dh	317Dh	[7:0]	_	Fixed to "00h"	00h	00h	_
7Eh	317Eh	[7:0]	_	Set to "00h" *	17h	17h	
7Fh to EBh	317Fh to 31EBh	to	_	Reserved	-	-	_
ECh	31ECh	[7:0]	ADBIT3	The value is set according to AD conversion bits 10 bit: 37h 12 bit: 0Eh	0Eh	0Eh	
to	31EDh to 31FFh	to	_	Reserved	_	_	_

IMX291LQR-C

(3) Registers corresponding to Chip ID = 04h in Write mode. (Read: Chip ID = 84h)

Ado		1.71	Register	Description		t value reset	Reflection
4-wire	I ² C	bit	name	Description	By register	By address	timing
00h	3200h	[7:0]					
to	to	to	_	Reserved	_	_	_
B7h	32B7h	[7:0]					
B8h	32B8h	[7:0]	_	Set to "50h" *	01h	01h	_
B9h	32B9h	[7:0]	_	Set to "10h" *	00h	00h	_
BAh	32BAh	[7:0]	_	Set to "00h" *	05h	05h	_
BBh	32BBh	[7:0]	_	Set to "04h" *	00h	00h	_
BCh	32BCh	[7:0]					
to	to	to	_	Reserved	_	_	_
C7h	32C7h	[7:0]					
C8h	32C8h	[7:0]	_	Set to "50h" *	01h	01h	_
C9h	32C9h	[7:0]	_	Set to "10h" *	00h	00h	_
CAh	32CAh	[7:0]	_	Set to "00h" *	05h	05h	_
CBh	32CBh	[7:0]	_	Set to "04h" *	00h	00h	_
CCh	32CCh	[7:0]					
to	to	to	_	Reserved	_	_	_
FFh	32FFh	[7:0]					

(4) Registers corresponding to Chip ID = 05h in Write mode. (Read: Chip ID = 85h)

Add	dress	1.7	Register	Description		t value reset	Reflection
4-wire	I ² C	bit	name	Description	By register	By address	timing
00h	3300h	[7:0]					
to	to	to	_	Reserved	_	_	_
2Bh	332Bh	[7:0]					
2Ch	332Ch	[7:0]	_	Set to "D3h" *	D1h	D1h	_
2Dh	332Dh	[7:0]	_	Set to "10h" *	F0h	F0h	_
2Eh	332Eh	[7:0]	_	Set to "0Dh" *	0Ch	0Ch	_
2Fh	332Fh	[7:0]					
to	to	to	_	Reserved	_	_	_
57h	3357h	[7:0]					
58	3358h	[7:0]	_	Set to "06h" *	FFh	FFh	_
59	3359h	[7:0]	_	Set to "E1h" *	F3h	F3h	_
5A	335Ah	[7:0]	_	Set to "11h" *	3Fh	3Fh	_
5Bh	335Bh	[7:0]					
to	to	to	_	Reserved	_	_	_
5Fh	335Fh	[7:0]					
60h	3360h	[7:0]	_	Set to "1Eh" *	E0h	E0h	_
61h	3361h	[7:0]	_	Set to "61h" *	C0h	C0h	_
62h	3362h	[7:0]	_	Set to "10h" *	0Dh	0Dh	_
63h	3363h	[7:0]					
to	to	to	_	Reserved	_	_	_
AFh	33AFh	[7:0]					
B0h	33B0h	[7:0]	_	Set to "50h" *	03h	03h	_
B1h	33B1h	[7:0]	_	Fixed to "80h" *	80h	80h	_
B2h	33B2h	[7:0]	_	Set to "1Ah"	00h	00h	_
B3h	33B3h	[7:0]	_	Set to "04h" *	00h	00h	_
B4h	33B4h	[7:0]					
to FFh	to 33FFh	to	_	Reserved	_	_	_

(5) Registers corresponding to Chip ID = 06h in Write mode. (Read: Chip ID = 86h) * These registers are set in CSI-2 interface only.

					Defaul	t value	
Add	Iress		Register			reset	Reflection
4-wire	I ² C	bit	name	Description	By register	By address	timing
00h	3400h	[7:0]					
to	to	to	_	Reserved	_	_	_
04h	3404h	[7:0]					
		0	_	Fixed to "0h"	0h		
		1	_	Fixed to "Oh"	0h		_
		2		Fixed to "0h" Fixed to "0h"	0h 0h		_
		4	_		UII		_
05h	3405h	7	REPETITION	* Refer to "Output signal		20h	
		5	[1:0]	Interface Control"	2h		Immediately
			[1.0]	section.			
		6	_	Fixed to "0h"	0h		_
		7	_	Fixed to "0h"	0h		_
06h	3406h	[7:0]	_	Fixed to "00h"	00h	00h	_
			PHYSICAL_	Dhysically compact that I am a number	26		Lanca Parale
		1	LANE_NUM [1:0]	Physically connect the Lane number	3h		Immediately
		2	_	Fixed to "0h"	0h		_
07h	3407h	3		Fixed to "0h"	0h	03h	
0711	340711	4	_	Fixed to "0h"	0h	0311	_
		5	_	Fixed to "0h"	0h		_
		6	_	Fixed to "0h"	0h		_
		7	_	Fixed to "0h"	0h		
08h to	3408h to	[7:0] to		Reserved			
13h	3413h	[7:0]	_	Reserved	_	_	_
1011	041011	0		LSB			
		1					
			OPB_SIZE_V	Vertical (V) direction OB width setting. *			
4.45	0.44.45	3	[5:0]	Refer to each operating setting.	0Ah	0.41-	Immediately
14h	3414h	4	-	There is easily operating setting.		0Ah	
		5		MSB			
		6	_	Fixed to "0h"	0h		_
		7	_	Fixed to "0h"	0h		_
15h	3415h						
to	to	to	_	Reserved	_	_	_
17h	3417h	[7:0]		LCD			
		0		LSB			
		2					
		3					
18h	3418h	4				49h	
		5		Vertical (V) direction effective			
		6	Y_OUT_SIZE	pixel width setting.	0449h		Immediately
		7	[12:0]				
		0		* Refer to each operating setting.			
		1					
		2					
19h	3419h	3				04h	
1311	1311	4		MSB		0411	
		5	_	Fixed to "0h"	0h		_
		6	_	Fixed to "0h"	0h		
		7	_	Fixed to "0h"	0h		_

Add	dress	1. 11	Register	Description		t value reset	Reflection
4-wire	I ² C	bit	name	Description	By register	By address	timing
1Ah to 40h	341Ah to 3440h	[7:0] to [7:0]	-	Reserved	_	_	1
41h	3441h	[7:0]	CSI_DT_FMT	LSB		0Ch	
42h	3442h	[7:0]	[15:0]	RAW10: 0A0Ah / RAW12: 0C0Ch MSB	0C0Ch	0Ch	Immediately
43h	3443h	[1:0]	CSI_LANE_ MODE [1:0]	Lane number setting 0: Setting prohibited, 1: 2Lane, 3: 4Lane 2: Setting prohibited Fixed to "00h"	3h 00h	03h	Immediately
44h	3444h	[7:0]		LSB Master clock frequency		40h	
45h	3445h	[7:0]	EXTCK_FREQ [15:0]	2520h: INCK = 37.125 MHz 4A40h: INCK = 74.25 MHz MSB	4A40h	4Ah	Immediately
46h	3446h	[7:0] 0	TCLKPOST[8:0]	Global timing setting	047h	47h	Immediately
47h	3447h	[7:1]	_	Fixed to "00h"	00h	00h	illillediately
48h	3448h	[7:0] 0	THSZERO[8:0]	Global timing setting	01Fh	1Fh	Immediately
49h	3449h	[7:1]	_	Fixed to "00h"	00h	00h	
4Ah	344Ah	[7:0] 0	THSPREPARE [8:0]	Global timing setting	017h	17h	Immediately
4Bh	344Bh	[7:1]	_	Fixed to "00h"	00h	00h	
4Ch 4Dh	344Ch 344Dh	0	TCLKTRAIL[8:0]	Global timing setting	00Fh	0Fh 00h	Immediately
4Eh	344Eh	[7:1]	_	Fixed to "00h"	00h	17h	
		0	THSTRAIL[8:0]	Global timing setting	017h		Immediately
4Fh	344Fh	[7:1]	_	Fixed to "00h"	00h	00h	
50h	3450h	[7:0] 0	TCLKZERO[8:0]	Global timing setting	047h	47h	Immediately
51h	3451h	[7:1]	_	Fixed to "00h"	00h	00h	,
52h	3452h	[7:0] 0	TCLKPREPARE [8:0]	Global timing setting	00Fh	0Fh	Immediately
53h	3453h	[7:1]		Fixed to "00h"	00h	00h	miniculatery

Add	lress		Register	-		t value reset	Reflection
4-wire	I ² C	bit	name	Description	By register	By address	timing
54h	3454h		TLPX[8:0]	Global timing setting	00Fh	0Fh	
55h	3455h	0 [7:1]	_	Fixed to "00h"	00h	00h	Immediately
56h	3456h	[7:0]	_	Tived to con	0011		
to	to	to	_	Reserved	_	_	_
71h	3471h	[7:0]					
		0		LSB			
		1					
		2					
72h	3472h	3				9Ch	
1211	347211	4		Horizontal (H) direction effective		9011	
		5	X_OUT_SIZE				
		6	[12:0]	pixel width setting.	079Ch		Immediately
		7	[.=.0]	* Refer to each operating setting.			
		0					
		1					
		2					
73h	3473h	3		MOD		07h	
		4		MSB Fixed to "0h"	Oh		
		5 6	_	Fixed to "0h"	0h 0h		_
		7	_	Fixed to "0h"	0h		
74h	3474h	[7:0]		i ixed to oii	OH		_
to	to	to	_	Reserved	_	_	_
7Fh	347Fh	[7:0]					
80h		[7:0]	INCKSEL7	The value is set according to INCK. INCK = 74.25 MHz : 92h INCK = 37.125 MHz: 49h	92h	92h	Immediately
81h to FFh	3481h to 34FFh	[7:0] to [7:0]	-	Reserved	_	_	_

Readout Drive mode

The table below lists the operating modes available with this sensor. (N/A: Not supported mode)

			AD	Output				Da	ata rate		
Window	Mode	INCK [MHz]	conversion [bit]	bit r width	rate	Parallel CMOS	Ÿ	Serial LVI [Mbps/cl	-	CSI [Mbps/l	
			נטונן	[bit]	[frame/s]	[Mpixel/s]	2 ch	4 ch	8 ch	2 Lane	4 Lane
	All pixel	37.125 74.25	10/12	10/12	30 / 25	74.25	445.5	222.75	111.375	445.5	222.75
			10/12	10/12	60 / 50	N/A	N/A	445.5	222.75	891	445.5
Full HD			10	10	120/100	N/A	N/A	N/A	445.5	N/A	891
1080p			10/12	10/12	*1	74.25	445.5	222.75	111.375	445.5	222.75
	Window cropping		10/12	10/12	*2	N/A	N/A	445.5	222.75	891	445.5
	3 177 3	_	10	10	*3	N/A	N/A	N/A	445.5	N/A	891
	All-pixel		10/12	10/12	30	37.125	297	148.5	N/A	297	148.5
HD720p		37.125 74.25	10/12	10/12	60	74.25	594	297	N/A	594	297
		74.25	10	10	120	N/A	N/A	594	N/A	N/A	594

^{*1:} FRSEL = 2h

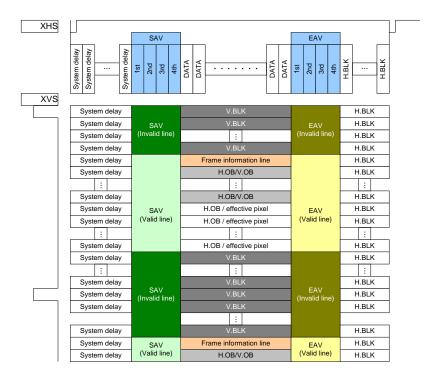
^{*2:} FRSEL = 1h

^{*3:} FRSEL = 0h

			F		rding els	-	Total numb	er of pixel	s	
Window	Mode	INCK	Frame rate			H [pixels]				1H period
	Mode	[MHz]	[frame/s]	Н	V	CMOS	LVDS	LVDS	V	[µs]
			[IIaiii6/3]	[pixels]	[lines]	(10 bit/	CSI-2	CSI-2	[lines]	
						12 bit)	(10 bit)	(12 bit)		
			25			2640	3168	2640		35.6
		37.125 74.25	30			2200	2640	2200	1125	29.6
	All-pixel		50	1920	1080	N/A	3168	2640		17.8
			60			N/A	2640	2200		14.8
			100			N/A	3168	N/A		8.9
Full HD			120			N/A	2640	N/A		7.4
1080p		37.125 74.25	*1	*4	*4	2200		2200	*5	29.6
	Window cropping		*2			N/A	2640			14.8
			*3			N/A		N/A		7.4
			25			1980	3168	2640		53.3
			30			1650	2640	2200		44.4
HD720p	All pivol	37.125	50	1200	720	1980	3168	2640	750	26.7
110120p	All-pixel	74.25	60	1280	720	1650	2640	2200	750	22.2
			100			N/A	3168	N/A		13.3
			120			N/A	2640	N/A		11.1

^{*1:} FRSEL = 2h

^{*2:} FRSEL = 1h


^{*3:} FRFES = 0h

^{*4:} Arbitrary value that was designated to cropping area

^{*5:} Please refer to description of window cropping mode

Sync code (Parallel CMOS output / Serial LVDS output)

The sync code is added immediately before and after "dummy signal + OB signal + effective pixel data" and then output. The sync code is output in order of 1st, 2nd, 3rd and 4th. The fixed value is output for 1st to 3rd. (BLK: Blanking period)

Sync Code Output Timing

List of Sync Code

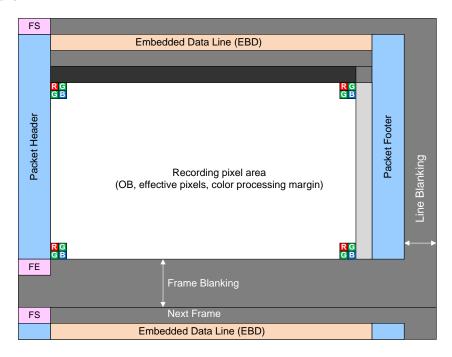
Cyma aada	1st o	code	2nd code		3rd code		4th code	
Sync code	10 bit	12 bit	10 bit	12 bit	10 bit	12 bit	10 bit	12 bit
SAV (Valid line)	3FFh	FFFh	000h	000h	000h	000h	200h	800h
EAV (Valid line)	3FFh	FFFh	000h	000h	000h	000h	274h	9D0h
SAV (Invalid line)	3FFh	FFFh	000h	000h	000h	000h	2ACh	AB0h
EAV (Invalid line)	3FFh	FFFh	000h	000h	000h	000h	2D8h	B60h

- (Note 1) 10 bit is the value output to the DLOP/M [C:G] when the register ODBIT = 0 in parallel output.
- (Note 2) 12 bit is the value output to the DLOP/M [B:G] when the register ODBIT = 1 in parallel output.
- (Note 3) They are output to each channel seriously in MSB first when low-voltage LVDS serial. For details, see the item of "Signal output" and "Output pin setting".

Sync Code Output Timing

The sensor output signal passes through the internal circuits and is output with a latency time (system delay) relative to the horizontal sync signal. This system delay value is undefined for each line, so refer to the sync codes output from the sensor and perform synchronization.

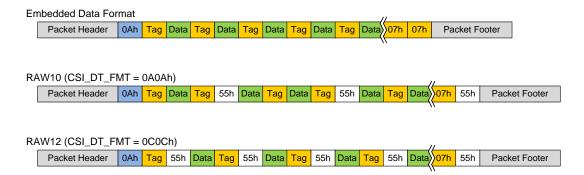
Image Data Output Format (CSI-2 output)


Frame Format

Each line of each image frame is output like the General Frame Format of CSI-2. The settings for each packet header are shown below.

DATA Type

Header [5:0]	Name	Setting register (I ² C)	Description		
00h	Frame Start Code	N/A	FS		
01h	Frame End Code	N/A	FE		
10h	NULL	N/A	Invalid data		
12h	Embedded Data	N/A	Embedded data		
2Bh	RAW10	Address: 41h, 42h (3441h, 3442h)	0A0Ah		
2Ch	RAW12	CSI_DT_FMT [15:0]	0C0Ch		
37h	OB Data	N/A	Vertical OB line data		


Frame Structure

Frame Structure of CSI-2 output

Embedded Data Line

The Embedded data line is output in a line following the sync code FS.

The end of the address and the register value is determined according to the tags embedded in the data.

Embedded Data Line Tag

Tag	Data Byte Description					
00h	Illegal Tag. If found treat as end of Data.					
07h	End of Data.					
AAh	CCI Register Index MSB [15:8]					
A5h	CCI Register Index LSB [7:0]					
5Ah	Auto increment the CCI index after the data byte – valid data					
	Data byte contains valid CCI register data.					
	Auto increment the CCI index after the data byte – null data					
55h	A CCI register does not exist for the current CCI index.					
	The data byte value is the 07h.					
FFh	Illegal Tag. If found treat as end of Data.					

SONY

Specific output examples are shown below. (4-wire: Chip ID = 05h)

	Add	ress		
Pixel		ΞΧ]	Data Byte Description	Value
	4-wire	I ² C	5 . 5	0.41
1	-		Data Format	0Ah
2			CCI Register Index MSB	AAh
3			[15:8]	33h
4			CCI Degister Index I CD	A5h
5			CCI Register Index LSB [7:0]	95h
6				5Ah
7	89h	3489h	Fixed to "00h"	00h
8			REGHOLD value	5Ah
9	8Ah	348Ah		[0]*
10	8Bh	348Bh	Fixed to "00h"	5Ah 00h
12	ODII	340DH	Fixed to doll	5Ah
13	8Ch	348Ch	Fixed to "00h"	00h
14				5Ah
15	8Eh	348Eh	Fixed to "90h"	90h
16				5Ah
17	8Fh	348Fh	Fixed to "02h"	02h
18				5Ah
19	8Dh	348Dh	Fixed to "01h"	01h
20				5Ah
21	90h	3490h	Fixed to "01h"	01h
22 23	91h	3491h	Frame count	5Ah
24	9111	349111		[7:0]* 5Ah
25	B0h	34B0h	Fixed to "01h"	01h
26			Black level setting value	5Ah
27	92h	3492h	Ů	[7:0]*
28				5Ah
29	93h	3493h		[15:8]*
30			Data format	5Ah
31	94h	3494h	RAW10: 0A0Ah	[7:0]*
32	0.5.1-	0.4055	RAW12: 0C0Ch	5Ah
33 34	95h	3495h		[15:8]* 5Ah
35	B4h	34B4h	Fixed to "00h"	00h
36	D-111	040411	Trace to our	5Ah
37	96h	3496h	Fixed to "00h"	00h
38				5Ah
39	97h	3497h	Fixed to "00h"	00h
40				5Ah
41	98h	3498h	Fixed to "2Ch"	2Ch
42				5Ah
43	99h	3499h	Fixed to "01h"	01h
44	0.45	24045	Fixed to "O2h"	5Ah
45 46	9Ah	349Ah	Fixed to "03h"	03h 5Ah
46	9Bh	349Bh	Fixed to "00h"	00h
48	7511	0 10011		5Ah
49	B8h	34B8h	Fixed to "00h"	00h
50				5Ah
51	9Ch	349Ch	Fixed to "00h"	00h
52				5Ah
53	9Dh	349Dh	Fixed to "00h"	00h
54				5Ah
55	9Eh	349Eh	Fixed to "A4h"	A4h
56	OEh	24056	Fixed to "01h"	5Ah
57	9Fh	349Fh	Fixed to "01h"	01h

	Add	ress		
Pixel	[HI	ΞX]	Data Byte Description	Value
	4-wire	I ² C		
58				5Ah
59	A0h	34A0h	Fixed to "01h"	01h
60				5Ah
61	A1h	34A1h	Fixed to "00h"	00h
62				5Ah
63	A2h	34A2h	Fixed to "64b"	64h
64	AZII	34AZII	Fixed to "64h"	5Ah
65	A3h	34A3h	Fixed to "00h"	00h
66				5Ah
67	A4h	34A4h	Fixed to "F0h"	F0h
68				5Ah
69	A5h	34A5h	Fixed to "00h"	00h
70				5Ah
71	A6h	34A6h	Fixed to "F0h"	F0h
72				5Ah
73	A7h	34A7h	Fixed to "00h"	00h
74	A 0 h	24406		5Ah
75 76	A8h	34A8h	Gain Setting Value	[7:0]* 5Ah
77	A9h	34A9h		[15:8]*
78	7.011	047 (311		5Ah
79	AAh	34AAh	Fixed to "00h"	00h
80				5Ah
81	ABh	34ABh	Fixed to "00h"	00h
82				5Ah
83	ACh	34ACh	Fixed to "00h"	00h
84				5Ah
85	ADh	34ADh	Fixed to "00h"	00h
86			Shutter setting value	5Ah
87	B1h	34B1h		[7:0]*
88 89	B2h	34B2h		5Ah
90	DZII	340211		[15:8]* 5Ah
91	B3h	34B3h		[23:16]*
92				5Ah
93	B5h	34B5h	Fixed to "00h"	00h
94				5Ah
95	B6h	34B6h	Fixed to "00h"	00h
96				5Ah
97	B7h	34B7h	Fixed to "00h"	00h
98				5Ah
99	B9h	34B9h	Fixed to "00h"	00h
100	D/h	24D^h	Fixed to "00h"	5Ah
101	BAh	34BAh	i ixeu to OOH	00h 5Ah
102	BBh	34BBh	Fixed to "00h"	00h
104	22.1	2.23.1		5Ah
105	BDh	34BDh	Fixed to "00h"	00h
106				5Ah
107	BEh	34BEh	Fixed to "00h"	00h
108	-			5Ah
109	BFh	34BFh	Fixed to "00h"	00h
110				5Ah
111	C1h	34C1h	Fixed to "00h"	00h
112	001	0.4001	Fired to "OOL"	5Ah
113	C2h	34C2h	Fixed to "00h"	00h 5Ah
114	C3h	34C3h	Fixed to "00h"	00h
110	0011	0-10011	1 1/100 10 0011	3011

	Add	ress		
Pixel	[HE	EX]	Data Byte Description	Value
	4-wire	I ² C		
116				5Ah
117	C5h	34C5h	Fixed to "00h"	00h
118				5Ah
119	C6h	34C6h	Fixed to "00h"	00h
120				5Ah
121	C7h	34C7h	Fixed to "00h"	00h
122				5Ah
123	AEh	34AEh	Fixed to "00h"	00h
124				5Ah
125	AFh	34AFh	Fixed to "00h"	00h
126			Vertical line value	5Ah
127	C9h	34C9h	(VMAX)	[7:0]*
128				5Ah
129	CAh	34CAh		[15:8]*
130				5Ah
131	CBh	34CBh		[23:16]*
132			Horizontal clock value	5Ah
133	CCh	34CCh	(HMAX)	[7:0]*
134				5Ah
135	CDh	34CDh		[15:8]*
136				5Ah
137	CEh	34CEh	Fixed to "00h"	00h
138				5Ah
139	CFh	34CFh	Fixed to "00h"	00h
140				5Ah
141	D0h	34D0h	Fixed to "00h"	00h
142				5Ah
143	D1h	34D1h	Fixed to "00h"	00h
144				5Ah
145	D2h	34D2h	Fixed to "9Bh"	9Bh
146				5Ah
147	D3h	34D3h	Fixed to "07h"	07h
148				5Ah
149	D4h	34D4h	Fixed to "48h"	48h
150				5Ah
151	D5h	34D5h	Fixed to "04h"	04h
152				5Ah
153	D6h	34D6h	Fixed to "9Ch"	9Ch
154				5Ah
155	D7h	34D7h	Fixed to "07h"	07h
156				5Ah
157	D8h	34D8h	Fixed to "49h"	49h
158				5Ah
159	D9h	34D9h	Fixed to "04h"	04h
160				5Ah
161	BCh	34BCh	Fixed to "00h"	00h
162				5Ah
163	C0h	34C0h	Fixed to "00h"	00h
164				5Ah
165	DAh	34DAh	Fixed to "00h"	00h
166				5Ah
167	DBh	34DBh	Fixed to "00h"	00h
168				5Ah
169	DCh	34DCh	Fixed to "00h"	00h
170				5Ah
171	DDh	34DDh	Fixed to "00h"	00h
172				5Ah
173	DEh	34DEh	Fixed to "9Bh"	9Bh
	DEh	34DEh	Fixed to "9Bh"	

	Add	ress		
Pixel	[HI	EX]	Data Byte Description	Value
	4-wire	I ² C		
174				5Ah
175	DFh	34DFh	Fixed to "07h"	07h
176				5Ah
177	E0h	34E0h	Fixed to "54h"	54h
178				5Ah
179	E1h	34E1h	Fixed to "04h"	04h
180				5Ah
181	E2h	34E2h	Fixed to "60h"	60h
182				5Ah
183	E3h	34E3h	Fixed to "01h"	01h
184				5Ah
185	E4h	34E4h	Fixed to "20h"	20h
186				5Ah
187	E5h	34E5h	Fixed to "01h"	01h
188				5Ah
189	E6h	34E6h	Fixed to "9Ch"	9Ch
190				5Ah
191	E7h	34E7h	Fixed to "07h"	07h
192				5Ah
193	E8h	34E8h	Fixed to "55h"	55h
194				5Ah
195	E9h	34E9h	Fixed to "04h"	04h
196				5Ah
197	C4h	34C4h	Fixed to "01h"	01h
198				5Ah
199	C8h	34C8h	Number of lane	[1:0]*
200				5Ah
201	EAh	34EAh	Fixed to "00h"	00h
202				5Ah
203	EBh	34EBh	Fixed to "00h"	00h
204				5Ah
205	ECh	34ECh	Fixed to "0Bh"	0Bh
206				5Ah
207	EDh	34EDh	Fixed to "00h"	00h
208				5Ah
209	EEh	34EEh	Fixed to "0Ch"	0Ch
210				5Ah
211	EFh	34EFh	Fixed to "00h"	00h
212				5Ah
213	F0h	34F0h	Fixed to "00h"	00h
214				5Ah
215	F1h	34F1h	Fixed to "00h"	00h
216				5Ah
217	F2h	34F2h	Fixed to "0Bh"	0Bh
218				5Ah
219	F3h	34F3h	Fixed to "00h"	00h
220				5Ah
221	F4h	34F4h	Fixed to "06h"	06h
222				5Ah
223	F5h	34F5h	Fixed to "00h"	00h
224				5Ah
225	F6h	34F6h	Fixed to "0Ch"	0Ch
226				5Ah
227	F7h	34F7h	Fixed to "00h"	00h
228				07h
229				07h
230				07h
	value the	t chown in	Data Byte Description is	

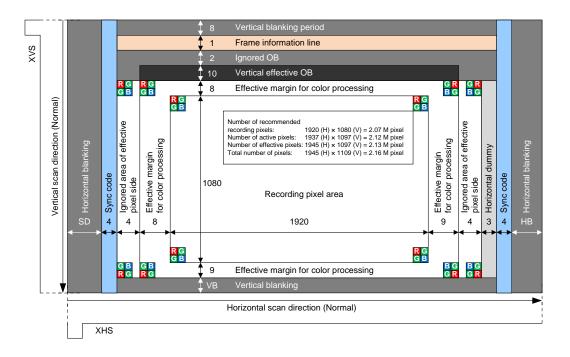
^{*} The value that shown in Data Byte Description is output.

Image Data Output Format

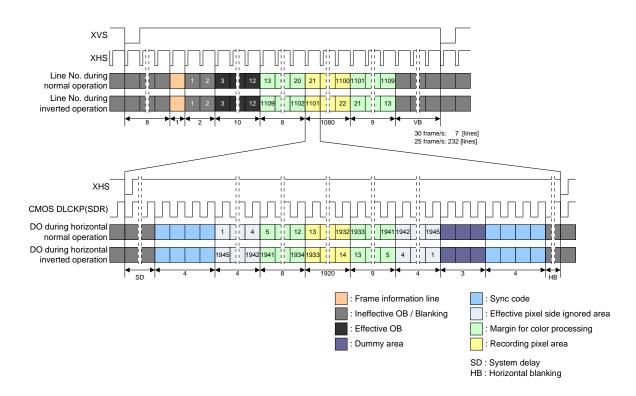
All-pixel scan mode (Full HD 1080p)

List of Setting Register for CMOS parallel / LVDS serial output

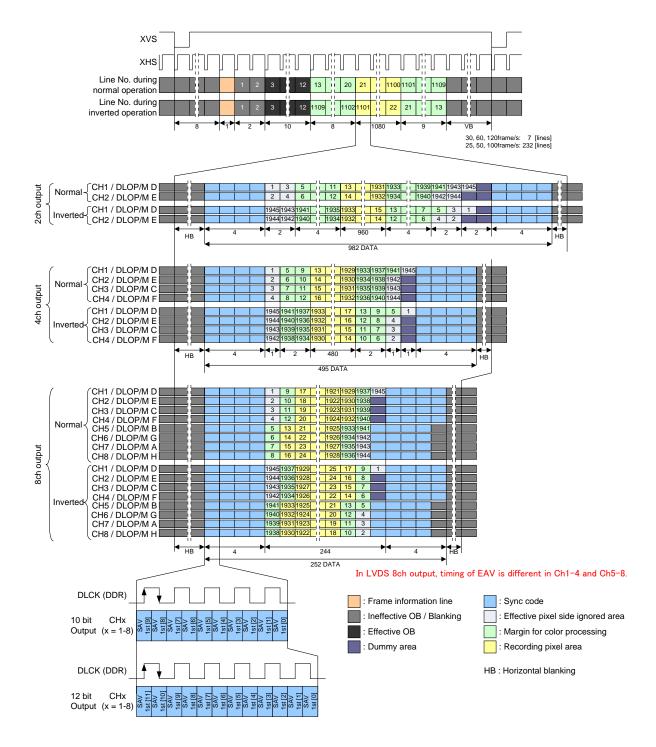
Addı	rocc			lnisie!	CMCC		LVDS seria	al.			
4-wire	ress I ² C	bit	Register Name	Initial Value	CMOS parallel				Remarks		
				value	parailei	2 ch	4 ch	8 ch			
Chip ID: (3005h	[0]	ADRIT	1h		Oh	' 1h		0: 10 bit 1: 12 bit		
USII	300311	[0]	ADBIT VREVERSE	1h		0h / 0h /			0: 10 bit, 1: 12 bit		
07h	20076	[0]		0h					0: Normal, 1: Inverted		
07h	3007h	[1]	HREVERSE WINMODE	0h		0h /			0: Normal, 1: Inverted		
		[6:4]	AN IININIODE	0h	0h 2h				Full HD 1080p		
		[1:0]	EDSEI	26	NI/A	N/A		1h	30 / 25 [frame/s]		
09h	3009h	[1.0]	FRSEL	2h	N/A N/A	N/A N/A	N/A	0h	60 / 50 [frame/s]		
		[4]	FDG_SEL	0h	IV/A	N/A Oh /			120 / 100 [frame/s] 0: LCG mode, 1: HCG mode		
12h	3012h	[7:0]		F0h		64			Initial setting		
13h	3012h	[7:0]	_	00h		00			Initial setting		
18h	3018h	[7:0]		0011		- 00	,,,,		initial setting		
19h	3019h		VMAX	465h		46	5h		25 /30 / 50 / 60 / 100 / 120 [frame/s]		
1Ah	301Ah	[1:0]	V 1411 1/2	70011		40	O.1		2070070071007120 [name/s]		
IAII	JUIAII	[1.0]							1130h: 30[frame/s] /		
1Ch	301Ch	[7:0]				1130h /	14A0h		14A0h: 25[frame/s]		
									0898h: 60[frame/s] /		
			HMAX	1130h	N/A	N/A	0898h	/ 0A50h	0A50h: 50[frame/s]		
1Dh	301Dh	[7:0]						044Ch /	044Ch: 120[frame/s] /		
					N/A	N/A	N/A	0528h	0528h: 100[frame/s]		
		[1:0]	ODBIT	1h		0h /	' 1h	302011	0: 10 bit, 1: 12 bit		
46h	3046h		OPORTSEL	0h	0h	Dh	Eh	Fh	l/F selection		
5Ch	305Ch	•	INCKSEL1	0Ch		0Ch		1			
5Dh	305Dh		INCKSEL2	00h		00h /			Set according to INCK		
5Eh	305Eh		INCKSEL3	10h		10h /			74.25 / 37.125 MHz		
5Fh	305Fh		INCKSEL4	01h		01h /					
Chip ID =											
		[7.0]	A D D IT 4	001		451	/ 001		10 bit: 1Dh		
29h	3129h	[7:0]	ADBIT1	00h		1Dh	uun		12 bit: 00h		
5Eh	315Eh	[7:0]	INCKSEL5	1Bh		1Bh /	1Ah		INCK: 74.25 / 37.125 MHz		
64h	3164h	[7:0]	INCKSEL6	1Bh		1Bh /	1Ah		INCK: 74.25 / 37.125 MHz		
7Ch	21704	יסיבו	ADDITO	17h		106	00h		10 bit: 12h		
7Ch	31/Ch	[7:0]	ADBIT2	17h		12h /	oun		12 bit: 00h		
ECh	21504	[7:0]	ADRITS	OEL		276	0Eh	·	10 bit: 37h		
ECh	SIEUN	[7:0]	ADBIT3	0Eh		37h /	UEII		12 bit: 0Eh		
Chip ID =	: 04h										
00h	3200h	[7:0]									
to	to	to	Set register value that	at describ	ed on item	"Register m	ap".				
FFh	32FFh	[7:0]									
Chip ID =	: 05h										
00h	3300h	[7:0]									
to	to	to	Set register value that	Set register value that described on item "Register map".							
FFh	33FFh	[7:0]									
Chip ID =											
00h	3400h	[7:0]									
to	to	to	Changing the value is	anging the value is not necessary.							
7Fh	347Fh	[7:0]									
80h	3480h	[7:0]	INCKSEL7	92h	92h / 49h INCK: 74.25 / 37.125 MHz						
81h	3481h	[7:0]									
to	to	to	Changing the value is	s not nec	essary.						
FFh	34FFh	[7:0]									

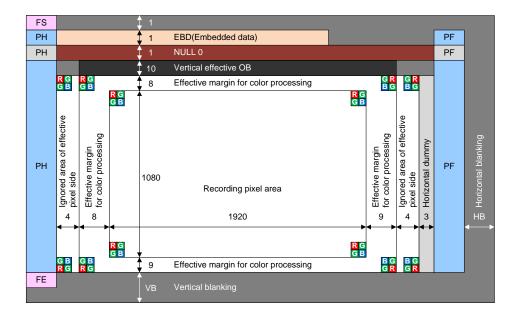

List of Setting Register for CSI-2 serial output

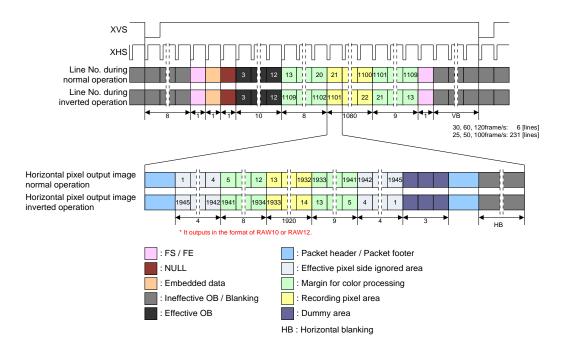
	CSI-2 serial									
Add	ress		Register	Initial	2 la	ane		4 lane		<u> </u>
	.20	bit	Name	Value	30 / 25	60 / 50	30 / 25	60 / 50	120 / 100	Remarks
4-wire	I ² C				[frame /s]	[frame /s]	[frame /s]	[frame /s]	[frame /s]	
Chip ID:	: 02h									
05h	3005h	[0]	ADBIT	1h			0h / 1h			0: 10 bit, 1: 12 bit
		[0]	VREVERSE	0h			0h / 1h			0: Normal, 1: Inverted
07h	3007h	[1]	HREVERSE	0h			0h / 1h			0: Normal, 1: Inverted
		[6:4]	WINMODE	0h			0h			Full HD 1080p
	[1:0] FRSEL 2h 2h					1h	2h	1h	0h	
09h	3009h	[4]	FDG_SEL	0h				0: LCG mode, 1: HCG mode		
12h	3012h	[7:0]	_	F0h			64h			Initial setting
13h	3013h	[7:0]	_	00h			00h			Initial setting
18h	3018h									05 /00 / 50 / 00 / 100 /
19h	3019h	[7:0]	VMAX	465h			465h			25 /30 / 50 / 60 / 100 /
1Ah	301Ah	[1:0]]						120 [frame/s]	
1Ch	301Ch	[7:0]	LINAAV	44205	1130h /	0898h /	1130h /	0898h /	044Ch /	30 / 60 /120 [frame / s] /
1Dh	301Dh	[7:0]	HMAX	1130h	14A0h	0A50h	14A0h	0A50h	0528h	25 / 50 /100 [frame / s]
4Ch	3046h	[1:0]	ODBIT	1h		1h				In CSI-2, fixed to "1h".
46h	304611	[7:4]	OPORTSEL	0h			0h			In CSI-2, fixed to "0h".
5Ch	305Ch	[7:0]	INCKSEL1	0Ch						
5Dh	305Dh	[7:0]	INCKSEL2	00h			Set according to INCK			
5Eh	305Eh	[7:0]	INCKSEL3	10h			10h / 20h			74.25 / 37.125 MHz
5Fh	305Fh	[7:0]	INCKSEL4	01h			01h / 01h			
Chip ID	= 03h									
29h	3129h	[7:0]	ADBIT1	00h			1Dh / 00h			10 bit: 1Dh 12 bit: 00h
5Eh	315Eh	[7:0]	INCKSEL5	1Bh			1Bh / 1Ah			Set according to INCK 74.25 / 37.125 MHz
64h	3164h	[7:0]	INCKSEL6	1Bh			1Bh / 1Ah			Set according to INCK 74.25 / 37.125 MHz
7Ch	317Ch	[7:0]	ADBIT2	17h			12h / 00h			10 bit: 12h 12 bit: 00h
ECh	31ECh	[7:0]	ADBIT3	0Eh			37h / 0Eh			10 bit: 37h
Chip ID	- 04h		<u> </u>							12 bit: 0Eh
00h	1	[7:0]								
to	to to Set register value that described on item "Register map".									
FFh	32FFh	[7:0]								
Chip ID		r=								
00h	3300h [7:0]									
to FFh	to to Set register value that described on item "Register map". 33FFh [7:0]									



Add			Register	Initial	2 la	ne			4 lane			
	120	bit	Name	Value	30 / 25	60 / 50	30 / 25	60 / 50	120 / 100	Remarks		
4-wire	I ² C				[frame /s]	[frame /s]	[frame /s]	[frame /s]	[frame /s]			
Chip ID	Chip ID = 06h											
	Data rat				445.5	891	222.75	445.5	891	[Mbps / Lane]		
05h	3405h	[5:4]	REPETITION	2h	1h	0h	2h	1h	0h			
07h	3407h	[1:0]	PHYSICAL_ LANE_NUM	3h	11	n		3h				
14h	3414h	[5:0]	OPB_SIZE_V	Ah			Ah					
18h	3418h	[7:0]	Y OUT SIZE	0449h			0449h					
19h	3419h	[4:0]	1_001_5IZE	044911			044911					
41h	3441h	[7:0]	CSI_DT_FMT	0C0Ch		0	1016 / 000Ck			0A0Ah: RAW10		
42h	3442h	[7:0]	CSI_DT_FWIT	0C0Ch		0/	40Ah / 0C0Ch	I		0C0Ch: RAW12		
43h	3443h	[1:0]	CSI_LANE_ MODE	3h	11	n		3h				
44h	3444h	[7:0]	EVICK EDEO	4 A 4 O b		37.1		Set according to INCK				
45h	3445h	[7:0]	EXTCK_FREQ	4A40h		74.	Set according to inch					
46h	3446h	[7:0]	TOLKBOOT	0.475	057h	077h	0.475	0575	077h	Clab al timin a		
47h	3447h	[0]	TCLKPOST	047h	047h 057h 077h 047h 057h 0					Global timing		
48h	3448h	[7:0]	TUCZEBO	0156	027h	067h	04.56	0276	0676	Clobal timina		
49h	3449h	[0]	THSZERO	01Fh	037h	067h	01Fh	037h	067h	Global timing		
4Ah	344Ah	[7:0]	THSPREPARE	017h	01Fh	047h	017h	01Fh	047h	Global timing		
4Bh	344Bh	[0]	THOI KEI AKE	01711	UTFII	04711	01711	UTFII	04711	Global tilling		
4Ch	344Ch	[7:0]	TCLKTRAIL	00Fh	01Fh	037h	00Fh	01Fh	037h	Global timing		
4Dh	344Dh	[0]	TOLKTIVAL	00111	01111	03711	00111	01111	03711	Global tilling		
4Eh	344Eh	[7:0]	THSTRAIL	017h	01Fh	03Fh	017h	01Fh	03Fh	Global timing		
4Fh	344Fh	[0]	THOTIVALE	01711	01111	03111	01711	01111	03111	Clobal tilling		
50h	3450h	[7:0]	TCLKZERO	047h	077h	0FFh	047h	077h	0FFh	Global timing		
51h	3451h	[0]	. 52.122.110	J .,	0, 111	V. 1 11	07711	57711	J. 1 11	C.Soar arring		
52h	3452h		TCLKPREPAR	00Fh	01Fh	03Fh	00Fh	01Fh	03Fh	Global timing		
53h	3453h	[0]	E	00111	V 1.1 11	00111	551 11	01111	30111	C.Soar arring		
54h	3454h	[7:0]	TLPX	00Fh	017h	037h	00Fh	017h	037h	Global timing		
55h	3455h	[0]		J J 11	V./!!		551 11	J	30711			
72h	3472h	[7:0]	X OUT SIZE	079Ch			079Ch					
73h	3473h	[4:0]	/_OUT_312E	013011			073011					
80h	3480h	[7:0]	INCKSEL7	92h		37.125 MHz: 49h 74.25 MHz: 92h						




Pixel Array Image Drawing in Full HD 1080p mode (Parallel CMOS output / Serial LVDS output)

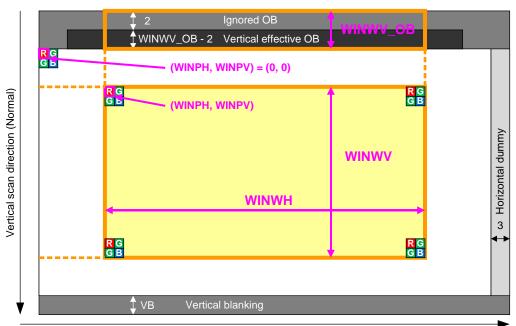

Drive Timing Chart for Full HD 1080p mode (Parallel CMOS output)

Drive Timing Chart for Full HD 1080p mode (Serial LVDS output)

Pixel Array Image Drawing in Full HD 1080p mode (CSI-2 serial output)

Drive Timing Chart for Full HD 1080p mode (CSI-2 serial output)

Window Cropping Mode


Sensor signals are cut out and read out in arbitrary positions.

Cropping position is set, regarding effective pixel start position as origin (0, 0) in all pixel scan mode. Cropping is available from all-pixel scan mode and vertical, horizontal period and frame rate are fixed to the value for this mode. Pixels cropped by horizontal cropping setting are output with left justified and that extends the horizontal blanking period.

Window cropping image is shown in the figure below.

Cropping position is set, regarding effective pixel start position as origin (0, 0) in all pixel scan mode.

Only vertical width can be set for OB (horizontal width is the same as the Window cropping width).

Horizontal scan direction (Normal)

Image Drawing of Window Cropping Mode

Restrictions on Window cropping mode

The register settings should satisfy following conditions:

WINPH + WINWH ≤ 1944 368 ≤ WINWH Set WINPH and WINWH to a multiple of 4.

V_{TTL} (Number of lines per frame or VMAX) ≥ WINWV_OB + WINWV + 13

However, $6 \le WINWV_OB \le 12$ WINPV + WINWV ≤ 1096 $304 \le WINWV$ OB_SIZE_V = WINWV_OB - 2 (In CSI-2 output) Y_OUT_SIZE = WINWV (In CSI-2 output)

Frame rate on Window cropping mode Frame rate [frame/s] = 1 / $(V_{TTL} \times (1H \text{ period}))$

1H period (unit: $[\mu s]$): Fix 1H time in a mode before cropping and calculate it by the value of "Number of INCK in 1H" in the table of "Operating Mode" and "List of Operation Modes and Output Rates".

List of Setting Register for CMOS parallel / LVDS serial output

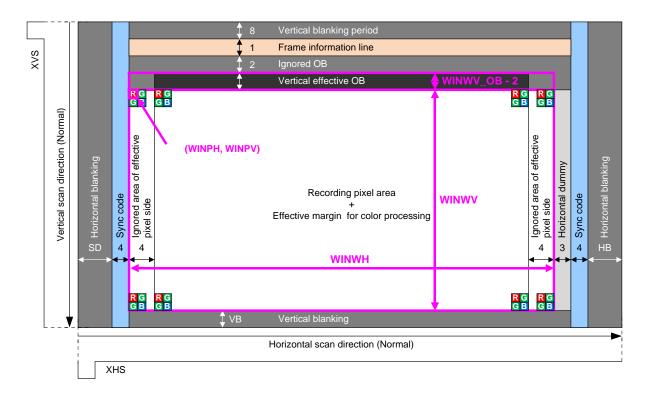
Add	ress			Initial	CMOS		LVDS serial			
4-wire	I ² C	bit	Register Name	Value	parallel	2 ch 4 ch 8 ch		I	Remarks	
Chip ID: (_			74.40	parano	2 0		0 0		
05h	3005h	[0]	ADBIT	1h		0h /	1h	0: 10 bit, 1: 12 bit		
	2230	[0]	VREVERSE	0h		0h /		0: Normal, 1: Inverted		
07h	3007h	[1]	HREVERSE	0h		0h /			0: Normal, 1: Inverted	
0711	000711		WINMODE	0h		4			Window cropping	
		[0.4]	WINNOBE	011		2			Williad W Cropping	
		[1:0]	FRSEL	2h	N/A	N/A		lh		
09h	3009h	[1.0]	TROLL	211	N/A	N/A	N/A	0h		
		F 41	FDG_SEL	0h	IV/A	Oh /		UII	0.1.00 made 1.1100 made	
405	20401-		FDG_SEL						0: LCG mode, 1: HCG mode	
12h	3012h	[7:0]	_	F0h		64			Initial setting	
13h	3013h	[7:0]	_	00h		00	'n		Initial setting	
18h	3018h	[7:0]	\	4051		.,				
19h	3019h		VMAX	465h		V ₁	TL		See previous page.	
1Ah	301Ah	[1:0]								
1Ch	301Ch	[7:0]				1130h /	14A0h		1130h: 30[frame/s] /	
									14A0h: 25[frame/s]	
			HMAX	1130h	N/A	N/A	0898h	/ 0A50h	0898h: 60[frame/s] /	
1Dh	301Dh	[7:0]						I	0A50h: 50[frame/s]	
					N/A	N/A	N/A	044Ch /	044Ch: 120[frame/s] /	
								0528h	0528h: 100[frame/s]	
46h	3046h		ODBIT	1h		0h /		1	0: 10 bit, 1: 12 bit	
			OPORTSEL	0h	0h	Dh	Eh	Fh	I/F selection	
5Ch	305Ch		INCKSEL1	0Ch		0Ch	18h		-	
5Dh	305Dh	[7:0]	INCKSEL2	00h		00h /	00h	Set according to INCK		
5Eh	305Eh	[7:0]	INCKSEL3	10h		10h /	20h	74.25/37.125 MHz		
5Fh	305Fh	[7:0]	INCKSEL4	01h		01h /	01h			
Chip ID =	03h									
29h	3129h	[7:0]	ADBIT1	00h		1Dh	00h		10 bit: 1Dh	
		[]							12 bit: 00h	
5Eh	315Eh	[7:0]	INCKSEL5	1Bh		1Bh /	1Ah		INCK: 74.25 / 37.125 MHz	
64h	3164h	[7:0]	INCKSEL6	1Bh		1Bh /	1Ah		INCK: 74.25 / 37.125 MHz	
7Ch	317Ch	[7:0]	ADBIT2	17h		12h /	00h		10 bit: 12h	
		[]				.=,			12 bit: 00h	
ECh	31FCh	[7:0]	ADBIT3	0Eh		37h /	0Fh		10 bit: 37h	
	0.20	[]	7.122.13	02		01117			12 bit: 0Eh	
Chip ID =	04h									
00h	3200h	[7:0]								
to	to	to	Set register value that	at describ	ed on item	"Register m	ap".			
FFh	32FFh	[7:0]								
Chip ID =										
00h	3300h	[7:0]								
to	to	to	Set register value that	at describ	ed on item	"Register m	ap".			
FFh	33FFh	[7:0]								
Chip ID =	06h									
00h	3400h	[7:0]								
to	to	to	Changing the value is	s not nec	essary.					
7Fh	347Fh	[7:0]		-						
80h	3480h	[7:0]	INCKSEL7	92h		92h /	49h		INCK: 74.25 / 37.125 MHz	
81h	3481h	[7:0]								
to	to	to	Changing the value is	s not nec	essary.					
FFh	34FFh	[7:0]								

List of Setting Register for CSI-2 serial output

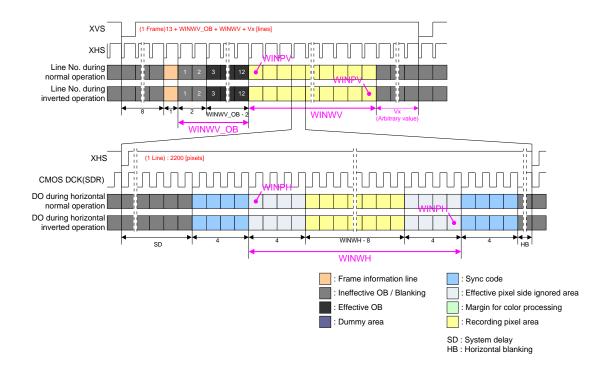
							CSI-2 serial			
Addı	ress		Register	Initial	2 la	ane	1			
	.20	bit	Name	Value	*1	*2	*1	*2	*3	Remarks
4-wire	I ² C				[frame /s] [frame /s] [frame /s] [frame /s]					
Chip ID:	: 02h									
05h	3005h	[0]	ADBIT	1h			0h / 1h			0: 10 bit, 1: 12 bit
		[0]	VREVERSE	0h			0h / 1h			0: Normal, 1: Inverted
07h	3007h	[1]	HREVERSE	0h				0: Normal, 1: Inverted		
		[6:4]	WINMODE	0h			4h			Window cropping
		[1:0]	FRSEL	2h	2h	1h	2h	1h	0h	
09h	3009h	[4]	FDG_SEL	0h			0h / 1h			0: LCG mode, 1: HCG mode
12h	3012h	[7:0]	_	F0h			64h			Initial setting
13h	3013h	[7:0]	_	00h			00h			Initial setting
18h	3018h	[7:0]								
19h	3019h	[7:0]	VMAX	465h			V_{TTL}			See previous page.
1Ah	301Ah	[1:0]								
1Ch	301Ch	[7:0]								465h: 30 / 60 /120
			HMAX	1130h	1130h /	0898h /	1130h /	0898h /	044Ch /	[frame / s] /
1Dh	301Dh	[7:0]	TIVIAX	113011	14A0h	0A50h	14A0h	0A50h	0528h	546h: 25 / 50 /100
										[frame / s]
46h	3046h		ODBIT	1h			1h			In CSI-2, fixed to "1h".
4011	304011	[7:4]	OPORTSEL	0h			0h			In CSI-2, fixed to "0h".
5Ch			INCKSEL1	0Ch			0Ch / 18h			
5Dh			INCKSEL2	00h			00h / 03h			Set according to INCK
5Eh			INCKSEL3	10h			10h / 20h			74.25/37.125 MHz
5Fh		[7:0]	INCKSEL4	01h			01h / 01h			
Chip ID =	= 03h									T
29h	3129h	[7:0]	ADBIT1	00h			1Dh / 00h			10 bit: 1Dh
										12 bit: 00h
5Eh	315Eh	[7:0]	INCKSEL5	1Bh			1Bh / 1Ah			Set according to INCK
										74.25 / 37.125 MHz
64h	3164h	[7:0]	INCKSEL6	1Bh			1Bh / 1Ah			Set according to INCK 74.25 / 37.125 MHz
										10 bit: 12h
7Ch	317Ch	[7:0]	ADBIT2	17h			12h / 00h			12 bit: 00h
										10 bit: 37h
ECh	31ECh	[7:0]	ADBIT3	0Eh			37h / 0Eh			12 bit: 0Eh
Chip ID =	: 04h			<u> </u>						1.2 310 0211
00h		[7:0]								
to	to	to	Set register valu	ue that de	escribed on	item "Reaist	er map".			
FFh						1-3.00	-r			
Chip ID =										
00h		[7:0]								
to	to to Set register value that described on item "Register map".									
	h 33FFh [7:0]									

										
Add	ress	bit	Register	Initial	2 la	ane		4 lane		Domorko
4-wire	I ² C	DIT	Name	Value	*1	*2	*1	*2	*3	Remarks
4-WIIE	10				[frame /s]	[frame /s]	[frame /s]	[frame /s]	[frame /s]	
Chip ID =	= 06h									
				Data rate	445.5	445.5 891 222.75 445.5 891				[Mbps / Lane]
05h	3405h	[5:4]	REPETITION	2h	1h	0h	2h	1h	0h	
07h	3407h	[1:0]	PHYSICAL_ LANE_NUM	3h	1	h		3h		
14h	3414h	• •	OPB_SIZE_V	Ah			Ah			
18h	3418h	[7:0]	Y_OUT_SIZE	0449h			0449h			
19h	3419h	[4:0]	1_001_0122	044011			044011			
41h	3441h	[7:0]	CSI_DT_FMT	0C0Ch		0.4	A0Ah / 0C0C	:h		0A0Ah: RAW10
42h	3442h	[7:0]	001_01_1	000011			107 111 7 0 0 0 0			0C0Ch: RAW12
43h	3443h	[1:0]	CSI_LANE_ MODE	3h	1	h				
44h	3444h	[7:0]	EXTCK_	44.40		37.125				
45h	3445h	[7:0]	FREQ	4A40h 74.25 MHz: 4A40h						Set according to INCK
46h	3446h	[7:0]	TOLKDOOT	0.471	0.571	0771	0.475	0.571	0771	Olahad Carlan
47h	3447h	[0]	TCLKPOST	047h	057h	077h	047h	057h	077h	Global timing
48h	3448h	[7:0]	TUCZEDO	01Fb	027h	067h	01 Fb	027h	067h	Clobal timing
49h	3449h	[0]	THSZERO	01Fh	037h	067h	01Fh	037h	067h	Global timing
4Ah	344Ah	[7:0]	THSPREPARE	017h	01Fh	047h	017h	01Fh	047h	Global timing
4Bh	344Bh	[0]	THOTKETAKE	01711	UTFII	04711	01711	OTFIL	04711	Global tilling
4Ch	344Ch	[7:0]	TCLKTRAIL	00Fh	01Fh	037h	00Fh	01Fh	037h	Global timing
4Dh	344Dh	[0]	TOLKTRAIL	00111	01111	03711	00111	01111	03711	Global tilling
4Eh	344Eh	[7:0]	THSTRAIL	017h	01Fh	03Fh	017h	01Fh	03Fh	Global timing
4Fh	344Fh	[0]	THOTTALE	01711	01111	00111	01711	01111	00111	Clobal tilling
50h	3450h	[7:0]	TCLKZERO	047h	077h	0FFh	047h	077h	0FFh	Global timing
51h	3451h	[0]	TOLICENO	04711	07711	01111	04711	07711	01111	Clobal tilling
52h	3452h	[7:0]	TCLKPREPARE	00Fh	01Fh	03Fh	00Fh	01Fh	03Fh	Global timing
53h	3453h	[0]	. 52	551 11	V	00111				
54h	3454h		TLPX	00Fh	017h	037h	00Fh	017h	037h	Global timing
55h	3455h	[0]								
72h	3472h	[7:0]	X OUT SIZE	079Ch						
73h	3473h	[4:0]		07 3011			079Ch			
80h	3480h	[7:0]	INCKSEL7	92h		37.125 74.25		Set according to INCK		

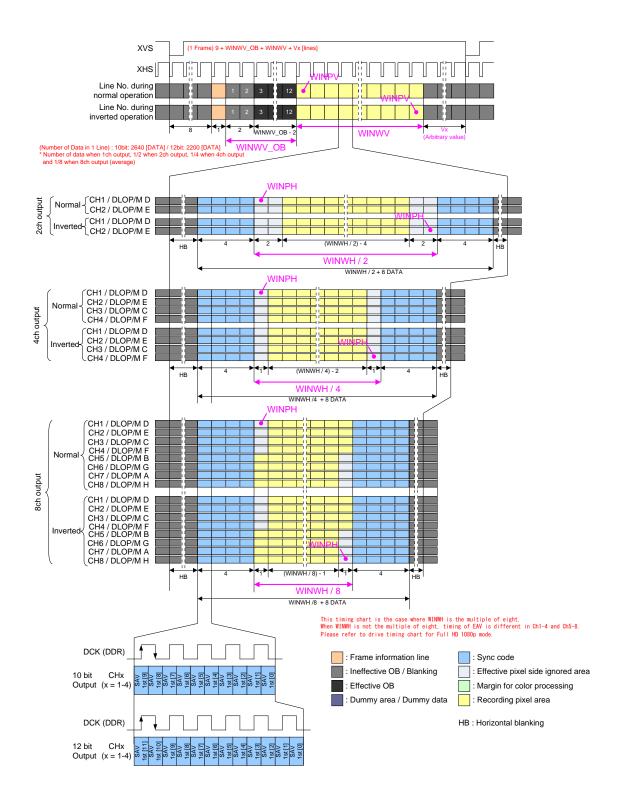
The example of window cropping setting is shown below.


The frame rate is maximum setting as each image format. For adjust the frame rate, please extend the VMAX or the number of lines per frame.

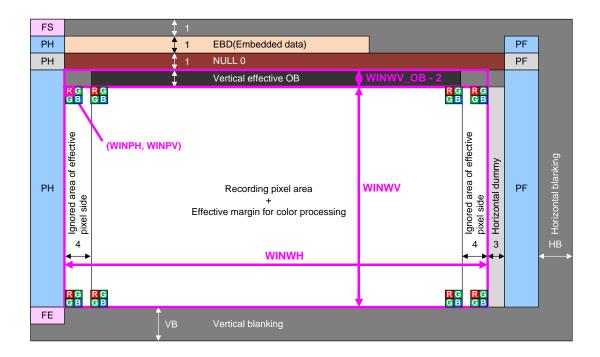
Example of Window cropping Mode Setting


Image	INCK	Output Resolution	Frame rate	Number of recording pixels		Register setting [DEC] (HEX)						
size	[MHz]	[bit]	[frame/s]	Horizontal	Vertical	FRSEL	HMAX	VMAX	WINPH	WINPV	WINWH	WINWV
		10/12	64.9			2	4400d (1130h)	520d (208h)				496d (1F0h)
VGA	37.125 74.25	10/12	129.8	640	480	1	2200d (898h)		640d (280h)	300d (12Ch)	656d (290h)	
		10	259.6			0	1100d (44Ch)					
		10/12	102.9			2	4400d (1130h)					
CIF	37.125 74.25	10/12	205.8	352	288	1	2200d (898h)	328d (148h)	784d (310h)	396d (18Ch)	368d (170h)	304d (130h)
		10	411.6			0	1100d (44Ch)			,		

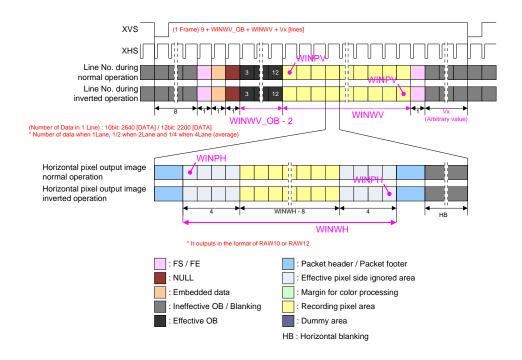
^{*} These settings are when the ignored OB line is 2 lines and effective OB line is 10 lines.


^{*} When the CSI-2 output, set the value that is set to register WINWV_OB to register Y_OUT_SIZE.

Pixel Array Image Drawing in Window Cropping mode (Parallel CMOS output / Serial LVDS output)



Drive Timing Chart for Window Cropping mode (Parallel CMOS output)



Drive Timing Chart for Window Cropping mode (Serial LVDS output)

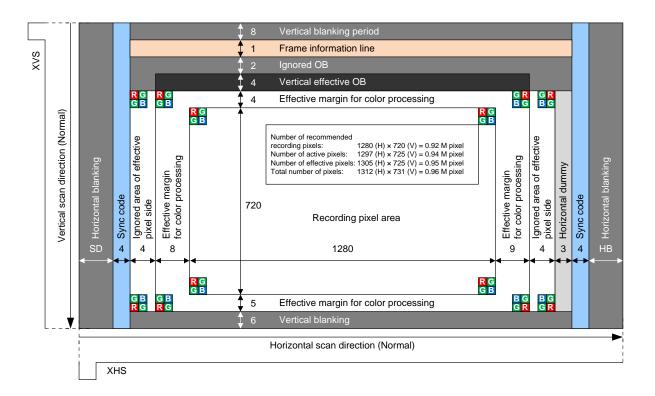
Pixel Array Image Drawing in Window Cropping mode (CSI-2 serial output)

Drive Timing Chart for Window Cropping mode (CSI-2 serial output)

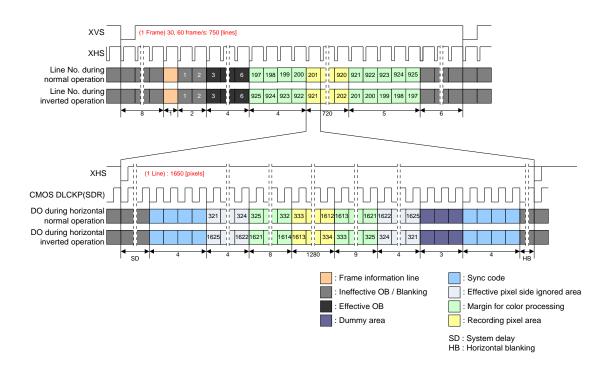
HD720p mode

List of Setting Register for CMOS parallel / LVDS serial output

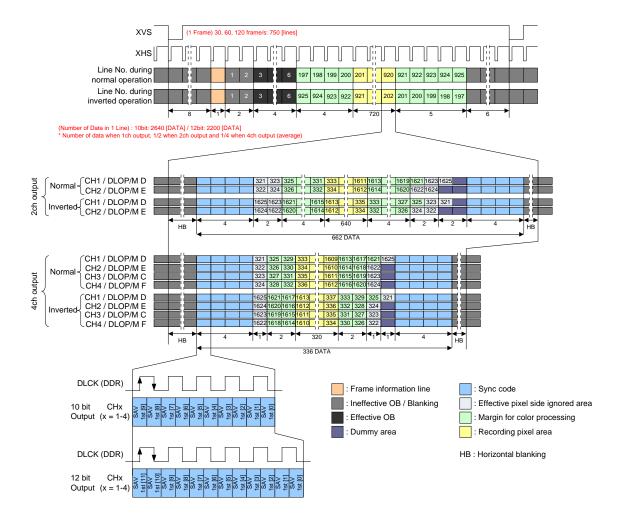
Add	ress			Initial	CMOS	LVDS serial			
4-wire	I ² C	bit	Register Name	Value	parallel	2 ch 4 ch		Remarks	
Chip ID:				74.40	Parano.	2 011	1 011		
05h	3005h	[0]	ADBIT	1h		0h / 1h		0: 10 bit, 1: 12 bit	
		[0]	VREVERSE	0h		0h / 1h		0: Normal, 1: Inverted	
07h	3007h	[1]	HREVERSE	0h		0h / 1h		0: Normal, 1: Inverted	
0711	300711		WINMODE	0h		1h		HD 720p	
		[0.4]	WINNODE	OH		2h		30 [frame/s]	
		[4.0]	EDOEL	Ol-				•	
09h	3009h	[1:0]	FRSEL	2h	N1/A	1h	01	60 [frame/s]	
					N/A	N/A	0h	120 [Frame/s]	
			FDG_SEL	0h		0h / 1h		0: LCG mode, 1: HCG mode	
12h	3012h		_	F0h		64h		Initial setting	
13h	3013h		-	00h		00h		Initial setting	
18h	3018h	[7:0]							
19h	3019h	[7:0]	VMAX	465h		2EEh		25 /30 / 50 / 60 / 100 / 120 [frame/s]	
1Ah	301Ah	[1:0]							
1Ch	201Ch	[7:0]				19C8h / 1EF0ł	•	19C8h: 30[frame/s] /	
1011	301Ch	[7.0]				19Coll/ IEFUI	I	1EF0h: 25[frame/s]	
			1.18.4.6.37	44001				0CE4h: 60[frame/s] /	
			HMAX	1130h	(OCE4h / 0F78h	n	0F78h: 50[frame/s]	
1Dh	301Dh	[7:0]					0672h /	0672h: 120[frame/s] /	
					N/A	N/A	07BCh	07BCh: 100[frame/s]	
		[1:0]	ODBIT	1h		0h / 1h	***	0: 10 bit, 1: 12 bit	
46h	3046h		OPORTSEL	0h	0h	Dh	Eh	I/F selection	
5Ch	205Ch		INCKSEL1	0Ch	OH	10h / 20h	LII	W Selection	
	†							Set econording to INCK	
5Dh		_	INCKSEL2	00h		00h / 00h		Set according to INCK	
5Eh		<u> </u>	INCKSEL3	10h		10h / 20h		74.25/37.125 MHz	
5Fh		[7:0]	INCKSEL4	01h		01h / 01h			
Chip ID	= 03h			l l				1	
29h	3129h	[7:0]	ADBIT1	00h		1Dh / 00h		10 bit: 1Dh	
								12 bit: 00h	
5Eh	315Eh	[7:0]	INCKSEL5	1Bh		1Bh / 1Ah		INCK: 74.25 / 37.125 MHz	
64h	3164h	[7:0]	INCKSEL6	1Bh		1Bh / 1Ah		INCK: 74.25 / 37.125 MHz	
7Ch	317Ch	[7:0]	ADBIT2	17h		12h / 00h		10 bit: 12h	
7011	017011	[7.0]	7.00112			12117 0011		12 bit: 00h	
ECh	31FCh	[7·0]	ADBIT3	0Eh		37h / 0Eh		10 bit: 37h	
LOII	STEON	[7.0]	ADDITO	OLII		37117 OE11		12 bit: 0Eh	
Chip ID	= 04h								
00h	3200h	[7:0]							
to	to	to	Set register value	that des	cribed on ite	m "Register m	ap".		
FFh	32FFh	[7:0]							
Chip ID	= 05h								
00h	3300h	[7:0]							
to	to	to	Set register value	ap".					
FFh	33FFh		, j			Ŭ	•		
Chip ID									
00h	3400h	[7:0]							
to	to	to	Changing the valu	e is not	necessarv.				
7Fh	347Fh			5					
80h			INCKSEL7	92h		92h / 49h		INCK: 74.25 / 37.125 MHz	
81h	3481h			J211		0=11/ TOIT			
to	to	to	Changing the valu	a is not	nacassarv				
FFh	34FFh	[7:0]		C IS HUL	ncocosaiy.				
LEII	OHIT II	[1.0]							


List of Setting Register for CSI-2 serial output

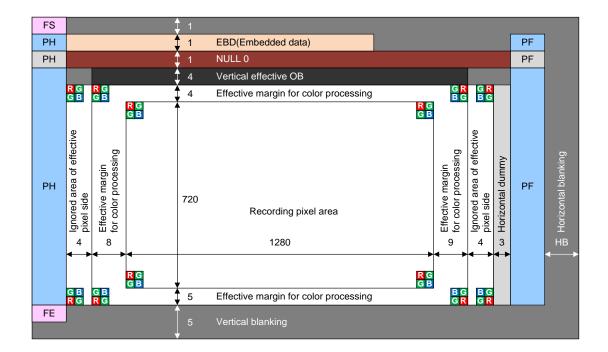
Add	ress		Register	Initial	2 la		CSI-2 serial	4 lane			
4	I ² C	bit	Name	Value	30	60	Remarks				
4-wire	10				[frame /s]	[frame /s]					
Chip ID:	1										
05h	3005h	[0]	ADBIT	1h			0h / 1h			0: 10 bit, 1: 12 bit	
		[0]	VREVERSE	0h			0h / 1h			0: Normal,	
071	00071	- 1					01 / 41			1: Inverted	
07h	3007h	[1]	HREVERSE	0h			0h / 1h			0: Normal, 1: Inverted	
		[6:4]	WINMODE	0h			1h			HD 720p	
		-	FRSEL	2h	2h	1h	2h	1h	0h	ΠΟ 120ρ	
09h	3009h				211	- '''			011	0: LCG mode,	
		[4]	FDG_SEL	0h			0h / 1h			1: HCG mode	
12h	3012h	[7:0]	_	F0h			64h			Initial setting	
13h	3013h	[7:0]	_	00h			00h			Initial setting	
18h	3018h	[7:0]								25 /30 / 50 / 60 / 100 / 120	
19h	3019h		VMAX	465h			2EEh			[frame/s]	
1Ah	301Ah							1	1	-	
1Ch	301Ch	[7:0]								30 / 60 /120	
451	00451	h [7:0]	HMAX	1130h	19C8h /	0CE4h /	19C8h /	0CE4h /	0672h /	[frame / s] /	
1Dh	301Dh				1EF0h	0F78h	1EF0h	0F78h	07BCh	25 / 50 /100	
		[1:0]	ODBIT	1h			[frame / s] In CSI-2, fixed to "1h".				
46h	3046h		OPORTSEL	0h			In CSI-2, fixed to "0h".				
5Ch	305Ch		INCKSEL1	0Ch			0h 10h / 20h			III C31-2, lixed to oil .	
5Dh	†		INCKSEL2	00h			00h / 00h			Set according to INCK	
5Eh	†		INCKSEL3	10h			10h / 20h			74.25/37.125 MHz	
5Fh	†		INCKSEL4	01h			01h / 01h				
Chip ID											
20h	24206	[7.0]	ADDIT4	00h			1Dh /00h			10 bit: 1Dh	
29h	312911	[7:0]	ADBIT1	00h			1Dh / 00h			12 bit: 00h	
5Eh	315Eh	[7:0]	INCKSEL5	1Bh			1Bh / 1Ah			Set according to INCK 74.25 / 37.125 MHz	
64h	3164h	[7:0]	INCKSEL6	1Bh			1Bh / 1Ah			Set according to INCK 74.25 / 37.125 MHz	
7Ch	317Ch	[7:0]	ADBIT2	17h			12h / 00h			10 bit: 12h 12 bit: 00h	
ECh	31ECh	[7:0]	ADBIT3	0Eh			10 bit: 37h 12 bit: 0Eh				
Chip ID	- 04h									12 Dit. UEII	
00h	3200h	[7:0]									
to	to		Set register valu	ue that de	escribed on	item "Reaist	er map".				
FFh											
Chip ID											
00h	3300h	[7:0]									
to	to	to	Set register valu	ue that d	escribed on	item "Regist	er map".				
FFh	FFh 33FFh [7:0]										



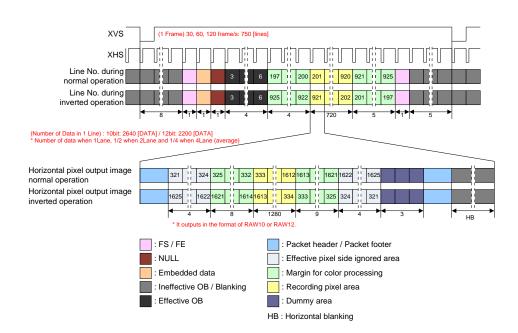
۸۵۵	****						CSI-2 serial			
Add	ress	bit	Register	Initial	2 la	ane		4 lane		Remarks
4-wire	I ² C	Dit	Name	Value	30	60	30	60	120	Remarks
+ Wilc					[frame /s]	[frame /s]	[frame /s]	[frame /s]	[frame /s]	
Chip ID	Chip ID = 06h								I	I
	1			Data rate	297	594	148.5	297	594	[Mbps / Lane]
05h	3405h	[5:4]	REPETITION	2h	1h	0h	2h	1h	0h	
07h	3407h	[1:0]	PHYSICAL_ LANE_NUM	3h	1	h		3h		
14h	3414h		OPB_SIZE_V	Ah			4h			
18h	3418h	[7:0]	Y_OUT_SIZE	0449h			2D9h			
19h	3419h	[4:0]	1_001_0122	044011			20011			
41h	3441h	[7:0]	CSI_DT_FMT	0C0Ch		0.4	A0Ah / 0C0C	:h		0A0Ah: RAW10
42h	3442h	[7:0]	001_01_1 1111	000011			1071117 0000			0C0Ch: RAW12
43h	3443h	[1:0]	CSI_LANE_ MODE	3h	1	h		3h		
44h	3444h	[7:0]	EXTCK_FREQ	4A40h		37.12		Set according		
45h	3445h	[7:0]	EXTOK_FREQ	4A4011		74.25	to INCK			
46h	3446h	[7:0]	TCLKPOST	047h	04Fh	067h	047h	04Fh	067h	Clobal timing
47h	3447h	[0]	TCLKPOST	04711	04711	06711	04711	04/11	00711	Global timing
48h	3448h	[7:0]	THSZERO	01Fh	n 02Fh 057h	057h	Global timing			
49h	3449h	[0]	TTIOZERO	01111	02111	03711	017h	02Fh	057h	Global tilling
4Ah	344Ah	[7:0]	THSPREPARE	RE 017h	017h	02Fh	00Fh	017h	02Fh	Global timing
4Bh	344Bh	[0]		01111		02111	00111	01711	02111	Global anning
4Ch	344Ch	[7:0]	TCLKTRAIL	00Fh	017h	027h	00Fh	017h	027h	Global timing
4Dh	344Dh	[0]		00				• • • • • • • • • • • • • • • • • • • •	02	0.02 ag
4Eh	344Eh	[7:0]	THSTRAIL	017h	017h	02Fh	00Fh	017h	02Fh	Global timing
4Fh	344Fh	[0]	- 							3
50h	3450h	[7:0]	TCLKZERO	047h	057h	0BFh	02Bh	057h	0BFh	Global timing
51h	3451h	[0]								
52h	3452h	[7:0]	TCLKPREPARE	00Fh	017h	02Fh	00Bh	017h	02Fh	Global timing
53h	3453h	[0]					, , ,			
54h	3454h	[7:0]	TLPX	00Fh	017h	027h	00Fh	017h	027h	Global timing
55h	3455h	[0]								
72h	3472h	[7:0]	X_OUT_SIZE	079Ch			51Ch			
73h	3473h	[4:0]		3, 3311			0.0			
80h	3480h	[7:0]	INCKSEL7	92h		37.125 74.25	Set according to INCK			



Pixel Array Image Drawing in HD720p mode (Parallel CMOS output / Serial LVDS output)



Drive Timing Chart for HD720p mode (Parallel CMOS output)

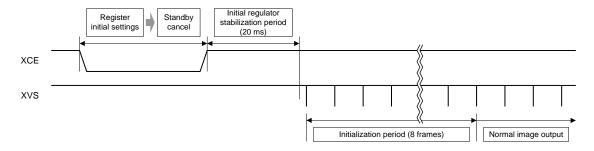


Drive Timing Chart for HD720p mode (Serial LVDS output)

Pixel Array Image Drawing in HD720p mode (CSI-2 serial output)

Drive Timing Chart for HD720p mode (CSI-2 serial output)

Description of Various Function


Standby Mode

This sensor stops its operation and goes into standby mode which reduces the power consumption by writing "1" to the standby control register STANDBY. Standby mode is also established after power-on or other system reset operation.

List of Standby Mode Setting

		Register	details		Initial	0.41		Remarks
Register name	Register	Chip ID	Address (): I ² C	bit	Initial value	Setting value	Status	
STANDBY		02h	00h	[0]	1	1	Standby	Register communication
STANDBT	_	0211	(3000h)	[O]		0	Operating	is executed in standby mode.

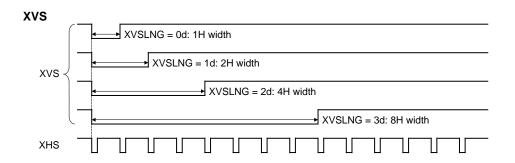
The serial communication registers hold the previous values. However, the address registers transmitted in standby mode are overwritten. The serial communication block operates even in standby mode, so standby mode can be canceled by setting the STANDBY register to "0". Some time is required for sensor internal circuit stabilization after standby mode is canceled. After standby mode is canceled, a normal image is output from the 9 frames after internal regulator stabilization (20 ms or more).

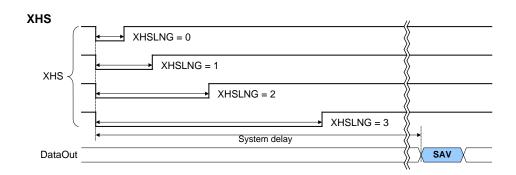
Sequence from Standby Cancel to Stable Image Output

Slave Mode and Master Mode

The sensor can be switched between slave mode and master mode. The switching is made by the XMASTER pin. Establish the XMASTER pin status before canceling the system reset. (Do not switch this pin status during operation.)

Input a vertical sync signal to XVS and input a horizontal sync signal to XHS when a sensor is in slave mode. For sync signal interval, input data lines to output for vertical sync signal and 1H period designated in each operating mode for horizontal sync signal. See the section of "Operating mode" for the number of output data line and 1H period.


Set the XMSTA register to "0" in order to start the operation after setting to master mode. In addition, set the count number of sync signal in vertical direction by the VMAX [17:0] register and the clock number in horizontal direction by the HMAX [13:0] register. See the description of Operation Mode for details of the section of "Operating Modes".


List of Slave and Master Mode Setting

Pin name	Pin processing	Operating mode	Remarks
VMACTED nin	Fixed to Low	Master mode	High: OV _{DD}
XMASTER pin	Fixed to High	Slave mode	Low: GND

List of Register in Master Mode

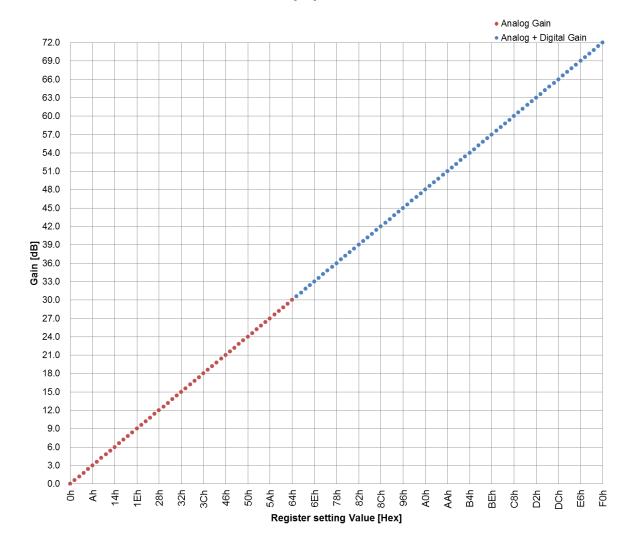
	Register detail	s (Chip ID	= 02h)	Initial			
Register name	Register	Register $Address$ bit $(): I^2C$		value	Setting value	Remarks	
XMSTA		02h (3002h)	[0]	1	Master operation ready Master operation start	The master operation starts by setting 0.	
	VMAX [7:0]	18h (3018h)	[7:0]				
VMAX [17:0]	VMAX [15:8]	19h (3019h)	[7:0]	00465h	See the item of each drive mode.	Line number per frame designated	
	VMAX [17:16]	1Ah (301Ah)	[1:0]				
HMAX [13:0]	HMAX [7:0]	1Ch (301Ch)	[7:0]	1130h	See the item of each drive mode.	Clock number per line designated	
[13.0]	HMAX [15:8]	1Dh (301Dh)	[7:0]	113011	See the item or each drive mode		
XVSLNG [1:0]		48h (3048h)	[5:4]	0h	0: 1H, 1: 2H, 2: 4H, 3: 8H	XVS low level pulse width designated	
XHSLNG [1:0]	_	49h (3049h)	[5:4]	0h	0: Min. to 3: Max. See the next	XHS low level pulse width designated	
XVSOUTSEL [1:0]	_	4Bh	[1:0]	0h	0: Fixed to High 2: VSYNC output Others: Setting prohibited		
XHSOUTSEL [1:0]	_	(304Bh)	[3:2]	0h	0: Fixed to High 2: HSYNC output Others: Setting prohibited		

XVS/XHS output waveform in sensor master mode

List of XHSLNG Register

	CMOS para	allel output	LVDS serial output						
DOK	74.25	37.125	594	297	148.5	445.5	222.75	111.375	
DCK	[MHz]	[MHz]	[Mbps / ch]	[Mbps / ch]	[Mbps / ch]	[Mbps / ch]	[Mbps / ch]	[Mbps / ch]	
XHSLNG = 0	8 clk	4 clk	64 bit	32 bit	16 bit	48 bit	24 bit	12 bit	
XHSLNG = 1	16 clk	8 clk	128 bit	64 bit	32 bit	96 bit	48 bit	24 bit	
XHSLNG = 2	32 clk	16 clk	256 bit	128 bit	64 bit	192 bit	96 bit	48 bit	
XHSLNG = 3	64 clk	32 clk	512 bit	256 bit	128 bit	384 bit	192 bit	96 bit	

The XVS and XHS are output in timing that set 0 to the register XMSTA. If set 0 to XMSTA during standby, the XVS and XHS are output just after standby is released. The XVS and XHS are output asynchronous with other input or output signals. In addition, the output signals are output with a undefined latency time (system delay) relative to the XHS. Therefore, refer to the sync codes output from the sensor and perform synchronization.

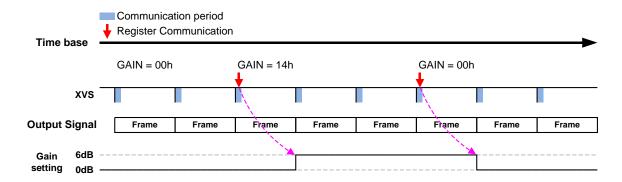

Gain Adjustment Function

The Programmable Gain Control (PGC) of this device consists of the analog block and digital block. The total of analog gain and digital gain can be set up to 72 dB by the GAIN [7:0] register setting. The same setting is applied in all colors.

The value which is 10/3 times the gain is set to register. (0.3 dB step)

Example)

When set to 6 dB: $6 \times 10/3 = 20d$; GAIN [7:0] = 14h When set to 12.6 dB: $12.6 \times 10/3 = 42d$; GAIN [7:0] = 2Ah



List of PGC Register

Register name	Register deta	nils (Chip ID =	02h)	Initial	Setting value	- Remarks	
	Register	Address (): I ² C	bit	value	Setting range		
GAIN [7:0]	GAIN [7:0]	14h (3014h)	[7:0]	00h	00h-F0h (0d-240d)	Setting value: Gain [dB] x 10/3 (0.3 dB step)	

The gain setting is reflected at the next frame that the communication is performed as shown below.

Gain Reflection Timing

Black Level Adjustment Function

The black level offset (offset variable range: 000h to 1FFh) can be added relative to the data in which the digital gain modulation was performed by the BLKLEVEL [8:0] register. When the BLKLEVEL setting is increased by 1 LSB, the black level is increased by 1 LSB.

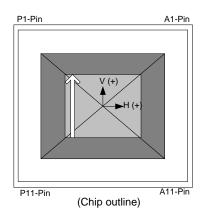
Use with values shown below is recommended.

10-bit output: 03Ch (60d) 12-bit output: 0F0h (240d)

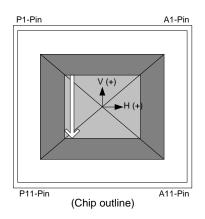
List of Black Level Adjustment Register

	Register detai	Is (Chip ID = 02h)		Initial	Setting value	
Register name	Register	Address (): I ² C	bit	value		
BLKLEVEL [8:0]	BLKLEVEL [7:0]	0Ah (300Ah)	- 17:01		000h to 1FFh	
DLNLEVEL [6.0]	BLKLEVEL [8]	0Bh (300Bh)	[0]	0F0h	OOOH tO TEEH	

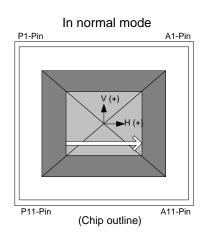
SONY IMX291LQR-C

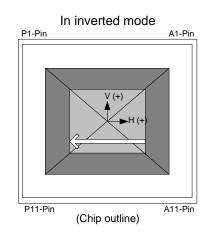

Normal Operation and Inverted Operation

The sensor readout direction (normal / inverted) in vertical direction can be switched by the VREVERSE register setting and in horizontal direction can be switched by the HREVERSE register setting. See the section of "Operating Modes" for the order of readout lines in normal and inverted modes. One invalid frame is generated when reading immediately after the readout direction change in order to switch the normal operation and inversion between frames.


List of Drive Direction Setting Register

	Register detai	Is (Chip ID = 02h)		Initial		
Register name	Register	Address (): I ² C	bit	value	Setting value	
VREVERSE	_	07h	[0]	0h	0: Normal (Initial value) 1: Vertical Inverted	
HREVERSE	_	(3007h)	[1]	0h	0: Normal (Initial value) 1: Horizontal Inverted	


In normal mode



In inverted mode

Normal and Inverted Drive Outline in Vertical Direction (TOP VIEW)

Normal and Inverted Drive Outline in Horizontal Direction (TOP VIEW)

Shutter and Integration Time Settings

This sensor has a variable electronic shutter function that can control the integration time in line units. In addition, this sensor performs rolling shutter operation in which electronic shutter and readout operation are performed sequentially for each line.

Note) For integration time control, an image which reflects the setting is output from the frame after the setting changes.

Example of Integration Time Setting

The sensor's integration time is obtained by the following formula.

Integration time = 1 frame period - (SHS1 + 1) × (1H period)

- *1 The frame period is determined by the input XVS when the sensor is operating in slave mode, or the register VMAX value in master mode. The frame period is designated in 1H units, so the time is determined by (Number of lines × 1H period).
- *2 See "Operating Modes" for the 1H period.

In this section, the shutter operation and storage time are shown as in the figure below with the time sequence on the horizontal axis and the vertical address on the vertical axis. For simplification, shutter and readout operation are noted in line units.



Image Drawing of Shutter Operation

Normal Exposure Operation (Controlling the Integration Time in 1H Units)

The integration time can be controlled by varying the electronic shutter timing. In the electronic shutter settings, the integration time is controlled by the SHS1 [17:0] register. Set SHS1 [17:0] to a value between 1 and (Number of lines per frame - 1). When the sensor is operating in slave mode, the number of lines per frame is determined by the XVS interval (number of lines), using the input XHS interval as the line unit.

When the sensor is operating in master mode, the number of lines per frame is determined by the VMAX register. The number of lines per frame differs according to the operating mode.

Registers Used to Set the Integration Time in 1H Units

	Register detai	ls (Chip ID = 0)2h)			
Register name	Register	Address (): I ² C	bit	Initial value	Setting value	
	SHS1 [7:0]	20h (3020h)	[7:0]		Sets the shutter sweep time.	
SHS1 [17:0]	SHS1 [15:8]	21h (3021h)	[7:0]	00000h	1 to (Number of lines per frame - 2) * 0 and number of lines per frame -1	
	SHS1 [17:16]	22h (3022h)	[1:0]		setting is prohibited	
	VMAX [7:0]	18h (3018h)	[7:0]			
VMAX [17:0]	VMAX [15:8]	19h (3019h)	[7:0]	00465h	Sets the number of lines per frame (only in master mode). See "Operating Modes" for the setting value in each mode.	
	VMAX [17:16]	1Ah (301Ah)	[1:0]			

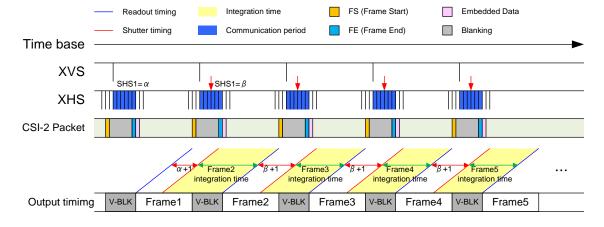


Image Drawing of Integration Time Control within a Frame

Long Exposure Operation (Control by Expanding the Number of Lines per Frame)

Long exposure operation can be performed by lengthening the frame period.

When the sensor is operating in slave mode, this is done by lengthening the input vertical sync signal (XVS) pulse interval.

When the sensor is operating in master mode, it is done by designating a larger register VMAX [17:0] value compared to normal operation. When the integration time is extended by increasing the number of lines, the rear V blanking increases by an equivalent amount.

Although the maximum value of long exposure operation changes in each modes, the maximum of long time exposure is approximately 1 s.

When set to a number of V lines or more than that noted for each operating mode, the imaging characteristics are not quaranteed during long exposure operation.

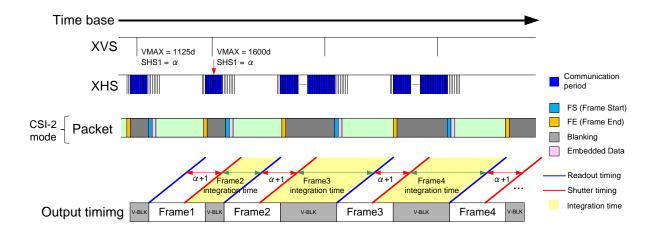


Image Drawing of Long Integration Time Control by Adjusting the Frame Period

Example of Integration Time Settings

The example of register setting for controlling the storage time is shown below.

Example of Integration Time Settings (In Full HD 1080p)

Operation	Sensor sett	ing (register)	Integration time	
Operation	VMAX*	SHS1**		
		1123	1H	
		:	i i	
Normal frame rate	1125	N	(1125 - (N + 1)) H	
		:	:	
			1123H	

^{*} In sensor master mode. In slave mode, the interval is the same as XVS input.

^{**} The SHS1 setting value (N) is set between "1" and "the VMAX value (M) - 2".

Signal Output

Output Pin Settings

The output formats of this sensor support the following modes.

CMOS logic parallel SDR output Low voltage LVDS serial (2 ch / 4 ch / 8 ch switching) DDR output CSI-2 serial (2 Lane / 4 Lane, RAW10 / RAW12) output

The switching for serial interface is made by the OMODE pin. Establish the OMODE pin status before canceling the system reset. (Do not switch this pin status during operation.) Each mode is set using the register OPORTSEL. The table below shows the output format settings.

List of Interface Switching

Pin name	Pin	Interface	Remarks	
	Fixed to Low	CSI-2 serial	High: OVDD	
OMODE pin	Fixed to High	CMOS parallel SDR Low voltage LVDS serial	Low: GND	

List of Output Interface Setting Register

Pagistar nama	Register details (Chip ID = 02h)		Initial	Setting	Description	
Register name	Address (): I ² C	bit	value	value	Description	
	46h (3046h)	[7:4]	Oh -	0h	CMOS logic parallel SDR output	
				Dh	Low voltage LVDS serial 2 ch DDR	
OPORTSEL				Eh	Low voltage LVDS serial 4 ch DDR	
[3:0]				Fh	Low voltage LVDS serial 8 ch DDR	
				N/A	CSI-2 serial 2Lane	
				N/A	CSI-2 serial 4Lane	

^{*} In CMOS output, Clock is output from DLCKP pin. DLCKM pin is fixed to low level.

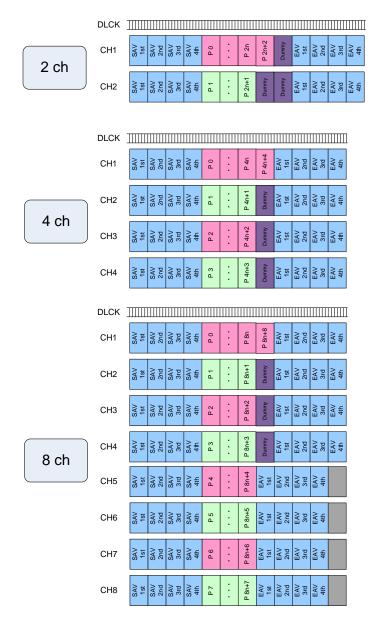
^{*} In CSI-2 output, set registers that described in section "CSI-2 output setting".

Each output pin is shown in the table below when setting low-voltage LVDS serial 2 ch / 4 ch / 8 ch output.

Output Pins for Low LVDS Serial and CMOS parallel

	CMOS	S logic	Low volta	ge LVDS serial D	DR output
DLOP/DLOM	parallel S	SDR output		4 ob	O ob
	10 bit	12 bit	2 ch 4 ch		8 ch
DLOMH	Low fixed	Low fixed	Hi-Z	Hi-Z	Ch8 / M
DLOPH	Low fixed	Low fixed	Hi-Z	Hi-Z	Ch8 / P
DLOMG	DO9	DO11	Hi-Z	Hi-Z	Ch6 / M
DLOPG	DO8	DO10	Hi-Z	Hi-Z	Ch6 / P
DLOMF	DO7	DO9	Hi-Z	Ch4 / M	Ch4 / M
DLOPF	DO6	DO8	Hi-Z	Ch4 / P	Ch4 / P
DLOME	DO5	DO7	Ch2 / M	Ch2 / M	Ch2 / M
DLOPE	DO4	DO6	Ch2 / P	Ch2 / P	Ch2 / P
DLOMD	DO3	DO5	Ch1 / M	Ch1 / M	Ch1 / M
DLOPD	DO2	DO4	Ch1 / P	Ch1 / P	Ch1 / P
DLOMC	DO1	DO3	Hi-Z	Ch3 / M	Ch3 / M
DLOPC	DO0	DO2	Hi-Z	Ch3 / P	Ch3 / P
DLOMB	Low fixed	DO1	Hi-Z	Hi-Z	Ch5 / M
DLOPB	Low fixed	DO0	Hi-Z	Hi-Z	Ch5 / P
DLOMA	Low fixed	Low fixed	Hi-Z	Hi-Z	Ch7 / M
DLOPA	Low fixed	Low fixed	Hi-Z	Hi-Z	Ch7 / P

Low-voltage LVDS serial 2 ch / 4 ch / 8 ch output format is shown in the figure below.


When setting 2 ch, after four data of SAV is output in the order of CH1 and CH2 pixel data is repeatedly output in the same order and then four data of EAV is output in the same order to CH1 and CH2 respectively.

When setting 4 ch, after four data of SAV is output in the order of CH1, CH2, CH3 and CH4 pixel data is repeatedly output in the same order and then four data of EAV is output in the same order to CH1, CH2, CH3 and CH4 respectively.

When setting 8 ch, after four data of SAV is output in the order of CH1, CH2, CH3, CH4, CH5, CH6, CH7 and CH8 pixel data is repeatedly output in the same order and then four data of EAV is output in the same order to CH1, CH2, CH3, CH4, CH5, CH6, CH7 and CH8 respectively.

Data is sent MSB first.

For details, see drive timing in each mode in the section of "Operation Mode".

Output Format of Low voltage LVDS Serial 2 ch / 4 ch / 8 ch (Full HD 1080p)

SONY

CSI-2 output

The output formats of this sensor support the following modes.

CSI-2 serial 2 Lane / 4 Lane, RAW10 / RAW12

The 2 Lane / 4 Lane serial signal output method using this sensor is described below.

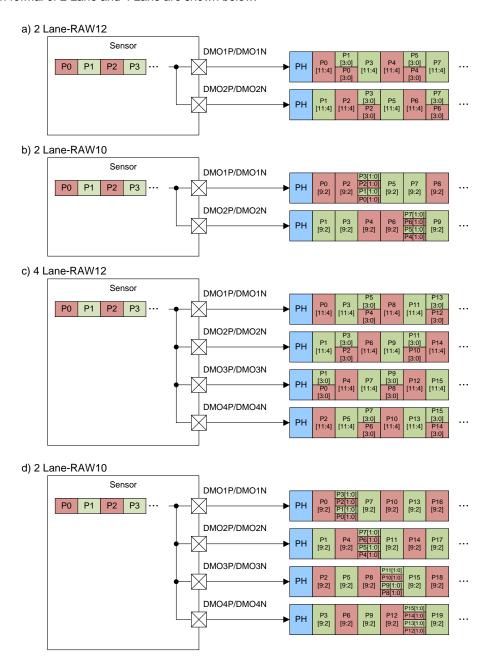
Complied with the CSI-2, data is output using 2 Lane / 4 Lane. The image data is output from the CSI-2 output pin. The DMO1P/DMO1N are called the Lane1 data signal, the DMO2P/DMO2N are called the Lane2 data signal, the DMO3P/DMO3N are called the Lane3 data signal, the DMO4P/DMO4N are called the Lane4 data signal. In addition, the clock signals are output from DMCKP/DMCKN of the CSI-2 pins.

In 2 Lane mode, data is output from Lane1 and Lane2. In 4 Lane mode, data is output from Lane1, Lane2, Lane3 and Lane4. The bit rate maximum value is 891 Mbps / Lane.

The select of RAW10 / RAW12 is set by the register: CSI_DT_FMT [15:0] The number of output lanes is set by the register: CSI_LANE_MODE [1:0] and the number of lanes physically connected is set by PHYSICAL_LANE_NUM [1:0]. Unused lanes (when setting 2 lanes; DMO3P / DMO3N, DMO4P / DMO4N) are set to Hi-Z output by the setting. When the number of lanes more than CSI_LANE_MODE is set by PHYSICAL_LANE_NUM, unused lanes output signals conformed to MIPI standard.

Pogistor name	Register details (Chip ID = 06h)		Initial	Setting	Description	
Register name	Address (): I ² C	bit	value	value	Description	
CSI_DT_FMT [15:0]	41h (3441h)	[7:0]	0C0Ch	0A0Ah	RAW10	
C3I_D1_FW1 [15.0]	42h (3442h)	[7:0]	OCOCII	0C0Ch	RAW12	
				0h	Setting prohibited	
PHYSICAL_LANE_NUM	07h		3h	1h	2Lane	
[1:0]	(3407h)	[1:0]		2h	Setting prohibited	
				3h	4Lane	
				0h	Setting prohibited	
CSI_LANE_MODE [1:0]] 43h (3443h) [[4:0]	3h	1h	2Lane	
		[1:0]	3fi	2h	Setting prohibited	
				3h	4Lane	

The formats of RAW12 and RAW10 are shown below.

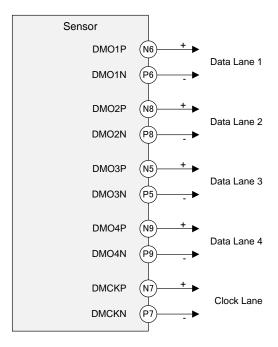

→ RAW12 Format

→ RAW10 Format

The Example of Format of RAW12 / RAW10

SONY IMX291LQR-C

The each formal of 2 Lane and 4 Lane are shown below.

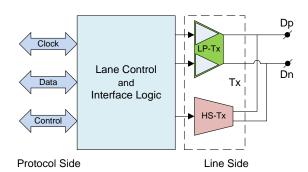


2 Lane / 4 Lane Output Format

SONY IMX291LQR-C

MIPI Transmitter

Output pins (DMO1P, DMO1N, DMO2P, DMO2N, DMO3P, DMO3N, DMO4P, DMO4D, DMCKP, DMCKN) are described in this section.



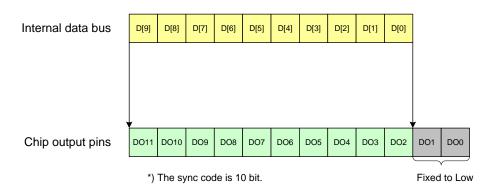
Relationship between Pin Name and MIPI Output Lane

The pixel signals are output by the CSI-2 High-speed serial interface. See the MIPI Standard

- MIPI Alliance Standard for Camera Serial Interface 2 (CSI-2) Version 1.01.00
- MIPI Alliance Specification for D-PHY Version 1.00.00

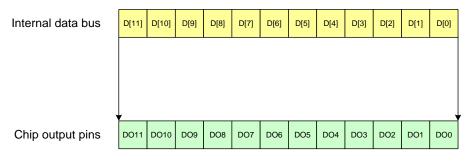
The CSI-2 transfers one bit with a pair of differential signals. The transmitter outputs differential current signal after converting pixel signals to it. Insert external resistance in differential pair in a series or use cells with a built-in resistance on the Receiver side. When inserting an external resistor, as close as possible to the Receiver. The differential signals maintain a constant interval and reach the receiver with the shortest wiring length possible to avoid malfunction. The maximum bit rate of each Lane are 891 Mbps / Lane.

Universal Lane Module Functions


Output Pin Bit Width Selection

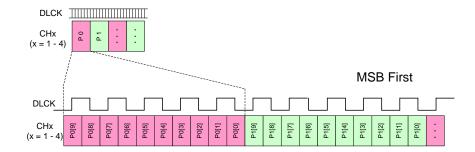
The output pin width can be selected from 10-bit or 12-bit output using the register ODBIT. In parallel output mode, when ODBIT = 0 (10-bit output), the lower 2 bits are fixed to Low level in CMOS output mode. Therefore, when using only 10 bits, the pins corresponding to the lower 2 bits can be left open on the board by setting ODBIT = 0. When low-voltage LVDS serial output, continuous data is output MSB first by 10-bit and 12-bit output setting respectively. 10-bits sync code are output when ODBIT = 0 (10-bit output), and 12-bit sync codes are output when ODBIT = 1 (12-bit output).

Output Pin Bit Width Selection Setting Register

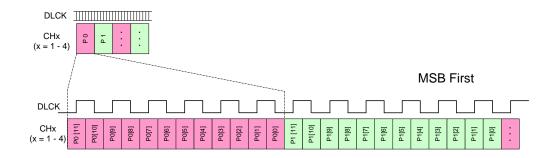

Register	Register de	etails (Chip ID = 02h	n)	Initial		
name	Register	Address (): I ² C	bit	value Setting value		
ODBIT	_	46h (3046h)	[0]	0h	0: 10 bit 1: 12 bit	

ODBIT = 0 (CMOS Parallel 10 bit output)

Bit Assignments in Parallel 10-bit Output Mode


ODBIT = 1 (CMOS Parallel 12 bit output)

^{*)} The sync code is 12 bit.


Bit Assignments in Parallel 12-bit Output Mode

ODBIT = 0 (Low voltage LVDS serial 10 bit output)

Example of Data format in low-voltage LVDS serial 10-bit output

ODBIT = 1 (Low voltage LVDS serial 12 bit output)

Example of Data format in low-voltage LVDS serial 12-bit output

Number of Internal A/D Conversion Bits Setting

The number of internal A/D conversion bits can be selected from 10 bits or 12 bits by the register ADBIT. See the section of "Operating Modes" for the correspondence with each mode.

List of Bit Width Selection

Register	*1: C	ster details hip ID = 02h hip ID = 03h		Initial value	Setting value	
name	Register	Address ():I ² C	bit			
ADBIT	_	05h *1 (3005h)	[0]	1h	0: 10 bit 1: 12 bit	
ADBIT1[7:0]	_	29h *2 (3129h)	[7:0]	00h	10 bit: 1Dh 12 bit: 00h	
ADBIT2[7:0]	_	7Ch *2 (317Ch)	[7:0]	17h	10 bit: 12h 12 bit: 00h	
ADBIT3[7:0]	_	ECh *2 (31ECh)	[7:0]	0Eh	10 bit: 37h 12 bit: 0Eh	

Output Rate Setting

The sensor output rate is determined uniformly by the sensor operating mode and the output format. See the section of "Operating Modes" for the relationship between each setting and the frame rate, data rate and data bit rate. The registers related to mode setting are shown in the table below.

Related Registers for Setting Operation Mode

	Register details (Chip ID = 02h)			Initial		
Register name	Register	Address (): I ² C	bit	value	Setting value	
		07h			0: Full HD 1080p	
WINMODE [2:0]	_	_	[6:4]	0h	1: 720 p	
		1 (.3007f) 1 1			4: Window cropping from Full HD 1080p	
					0: 120 frame / s	
FRSEL [1:0]		09h	[1:0]	1h	1: 60 frame / s	
FROEL [1.0]		(3009h)	[1.0]	'''	2: 30 frame / s	
					3: Setting prohibited	

Output Signal Range

In sub LVDS output and CMOS parallel output mode, the sensor output has 10 bit or 12 bit gray scale according to the setting. The output is not performed at full range and the range is the values shown in the table below See the item of "Sync Codes" in the section of "Operating Modes" for the sync codes.

Output Gradation and Output Range (Low voltage LVDS Output)

	Output value				
Output gradation	Min.	Max.			
10 bit	001h	3FEh			
12 bit	001h	FFEh			

In CSI-2 output mode, the sensor output has either a 10 bit or 12 bit gradation, but output is not performed over the full range, and the maximum output value is the 3FFh value (10 bit output) and the FFFh one (12 bit output). The output range for each output gradation is shown in the table below.

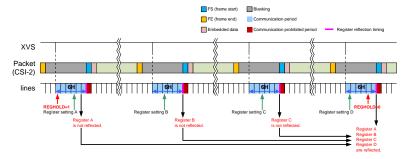
Output Gradation and Output Range (CSI-2 Output)

	Output value				
Output gradation	Min.	Max.			
10 bit	000h	3FFh			
12 bit	000h	FFFh			

INCK Setting

The available operation mode varies according to INCK frequency. Input either 37.125 MHz or 74.25 MHz for INCK frequency. The INCK setting register and the list of INCK setting are shown in the table below.

INCK Setting Register


Register	Register details *1: Chip ID = 02h *2: Chip ID = 03h *3: Chip ID = 06h			Initial				MHz		
name	Register	Address (): I ² C	bit	value	1080p CMOS LVDS	1080p CSI-2	720p	1080p CMOS LVDS	1080p CSI-2	720p
INCKSEL1	_	5Ch *1 (305Ch)	[7:0]	0Ch	18h	18h	20h	0Ch	0Ch	10h
INCKSEL2	_	5Dh *1 (305Dh)	[7:0]	00h	00h	03h	00h	00h	03h	00h
INCKSEL3	_	5Eh *1 (305Eh)	[7:0]	10h	20h	20h	20h	10h	10h	10h
INCKSEL4	1	5Fh *1 (305Fh)	[7:0]	01h	01h	01h	01h	01h	01h	01h
INCKSEL5	1	5Eh *2 (315Eh)	[7:0]	1Bh	1Ah	1Ah	1Ah	1Bh	1Bh	1Bh
INCKSEL6	_	64h *2 (3164h)	[7:0]	1Bh	1Ah	1Ah	1Ah	1Bh	1Bh	1Bh
INCKSEL7	_	80h *3 (3480h)	[7:0]	92h	49h	49h	49h	92h	92h	92h

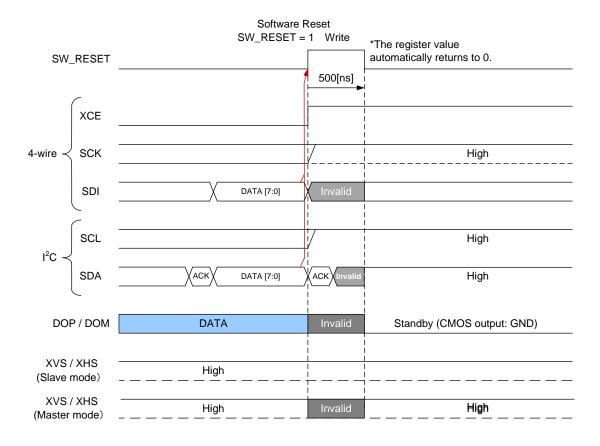
Register Hold Setting

Register setting can be transmitted with divided to several frames and it can be reflected globally at a certain frame by the register REGHOLD. Setting REGHOLD = 1 at the start of register communication period prevents the registers that are set thereafter from reflecting at the frame reflection timing. The registers that are set when setting REGHOLD = 1 are reflected globally by setting REGHOLD = 0 at the end of communication period of the desired frame to reflect the register.

Register Hold Setting Register

Register		Register det	Register details (Chip ID = 02h)			
_	ame	Register	Address ():I ² C	bit	Initial value	Setting value
REGH	HOLD	_	01h (3001h)	[0]	0h	0: Invalid 1: Valid (Register hold)

Register Hold Setting


Software Reset (CMOS parallel / Low voltage LVDS serial only)

This function is prohibited in CSI-2 output mode.

Software reset can be performed by register setting using the register SW_RESET.Sensor reset is performed by setting SW_RESET = 1. However, the communication to continuous address cannot use. The registers become initial state and standby 500 ns after setting SW_RESET = 1. The SW_RESET signal returns to "0" automatically. The DOPA-H/DOMA-H/DCKP/DCKM terminal will be in the standby state (GND) of the CMOS output. The XVS and XHS output High in master mode. Input High to the XVS and XHS before setting SW_RESET = 1 in slave mode. Follow the sequence in the item of "Standby Mode" to perform register initial setting and standby cancel from standby state.

Software Reset Register Setting

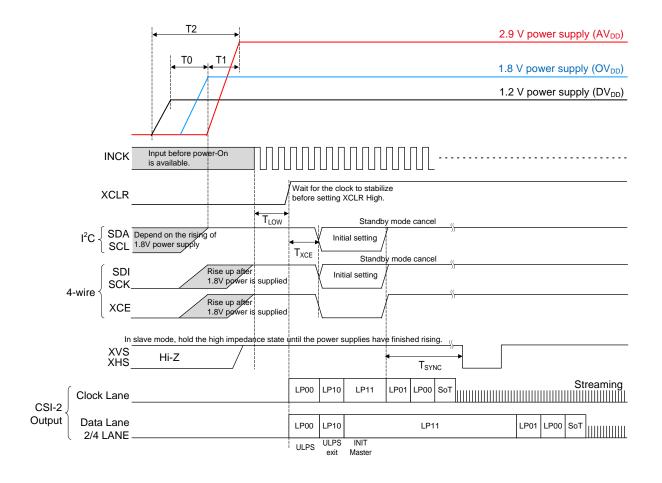
Pogistor	Register det	ails (Chip ID = 0	2h)			
Register name	Register	Address (): I ² C	bit	Initial value	Setting value	
SW_RESET	<u> </u>	03h (3003h)	[0]	0h	0: Normal Operation 1: Reset	

Software Reset

Mode Transitions

When changing the operating mode during sensor drive operation, set via sensor standby. However, these transitions that described below can be transitions without standby.

- ◆ Change the number of vertical lines (In sensor master mode, change the VMAX. In sensor slave mode, change the period of XVS input.)
- ◆ Horizontal and vertical scan direction. (When the vertical scan direction is changed, an invalid frame generates during transition.)
- ◆ Change the HCG mode and LCG mode.
- ◆ Change the mode between All-pixel scan and Window cropping. (However, It is case that transitions by not changing register HMAX and FRSEL. In addition, an invalid frame generates during transition.)

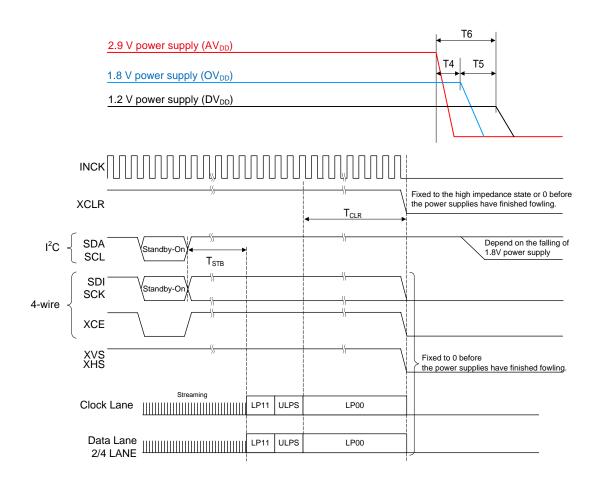

When changing input INCK frequency (register INCKSEL1, INCKSEL2, INCKSEL3, INCKSEL4, INCKSEL5, INCKSEL6, and INCKSEL7 change) or when operating mode transition that changes output bit width (register ODBIT) or output format (register OPORTSEL [3:0]), always start the operation via sensor standby after changing mode during standby following the standby cancel sequence.

When changing input INCK frequency, care should be taken not to be input pulses whose width are shorter than the High / Low level width in front and behind of the INCK pulse at the frequency change. If the pulses above generate at the frequency change, change INCK frequency during system reset in the state of XCLR = Low, and then perform system clear in the state of XCLR = High following the item of "Power on sequence" in the section of "Power on / off sequence". Execute initial setting again because the register settings become default state after system clear.

Power-on and Power-off Sequence

Power-on sequence

- 1. Turn On the power supplies so that the power supplies rise in order of 1.2 V power supply (DVDD) \rightarrow 1.8 V power supply (OVDD) \rightarrow 2.9 V power supply (AVDD). In addition, all power supplies should finish rising within 200 ms.
- 2. Start master clock (INCK) input after turning On the power supplies.
- 3. The register values are undefined immediately after power-on, so the system must be cleared. Hold XCLR at Low level for 500 ns or more after all the power supplies have finished rising. (The register values after a system clear are the default values.) In addition, hold XCE to High level during this period. Rise XCE after 1.8 V power supply (OVDD).
- 4. The system clear is applied by setting XCLR to High level. However, the maser clock needs to stabilize before setting the XCLR pin to High level.
- Make the sensor setting by register communication after the system clear. A period of 20 μs or more should be provided after setting XCLR High before inputting the communication enable signal XCE. In I²C communication, XCE is fixed to High.



Power-on Sequence

Item	Symbol	Min.	Max.	Unit
1.2 V power supply rising → 1.8 V power supply rising	T0	0	_	ns
1.8 V power supply rising → 2.9 V power supply rising	T1	0	_	ns
Rising time of all power supply	T2	_	200	ms
INCK active → Clear OFF	T_{LOW}	500	_	ns
Clear OFF → Communication start	T _{XCE}	20	_	μs
Standby OFF (communication) → External input XHS,XVS (slave mode only)	T _{SYNC}	20	_	ms

Power-off sequence

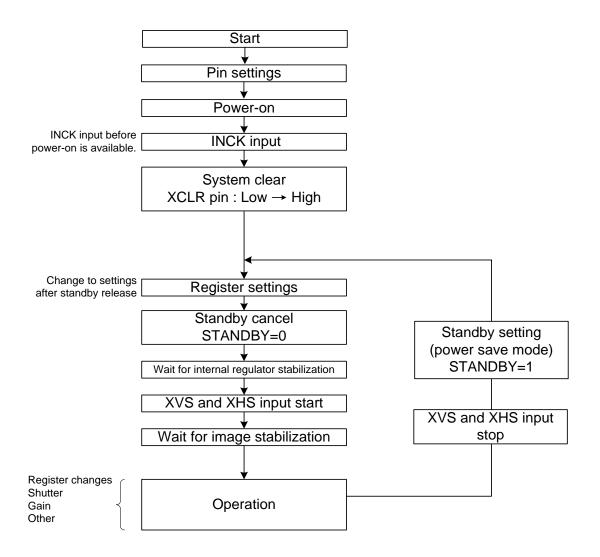
Turn Off the power supplies so that the power supplies fall in order of 2.9 V power supply (AVDD) \rightarrow 1.8 V power supply (OVDD) \rightarrow 1.2 V power supply (DVDD). In addition, all power supplies should falling within 200 ms. Set each digital input pin (INCK, XCE, SCK, SDI, XCLR, XMASTER, OMODE, XVS, XHS) to 0 V before the 1.8 V power supply (OVDD) falls.

Power-off Sequence

Item	Symbol	Min.	Max.	Unit
Standby ON (communication) → LP11 mode start	T _{STB}	Unti	I FE	
LP00 → XCLR falling	T _{CLR}	128	_	cycle
2.9 V power shut down → 1.8 V power shut down	T4	0	_	ns
1.8 V power shut down → 1.2 V power shut down	T5	0	_	ns
Shut down time of all power supply	T6	_	200	ms

SONY IMX291LQR-C

Sensor Setting Flow


Setting Flow in Sensor Slave Mode

The figure below shows operating flow in sensor slave mode.

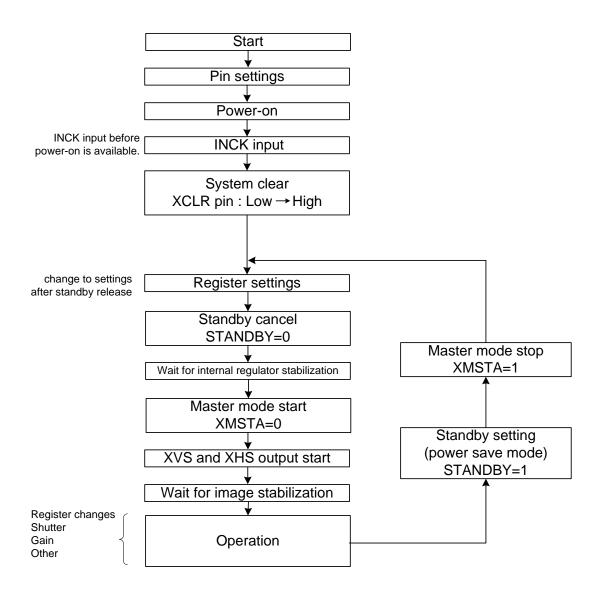
For details of "Power-on" to "Reset cancel", see the item of "Power-on sequence" in this section.

For details of "Standby cancel" until "Wait for image stabilization", see the item of "Standby mode".

"Standby setting (power save mode) can be made by setting the STANDBY register to "1" during "Operation".

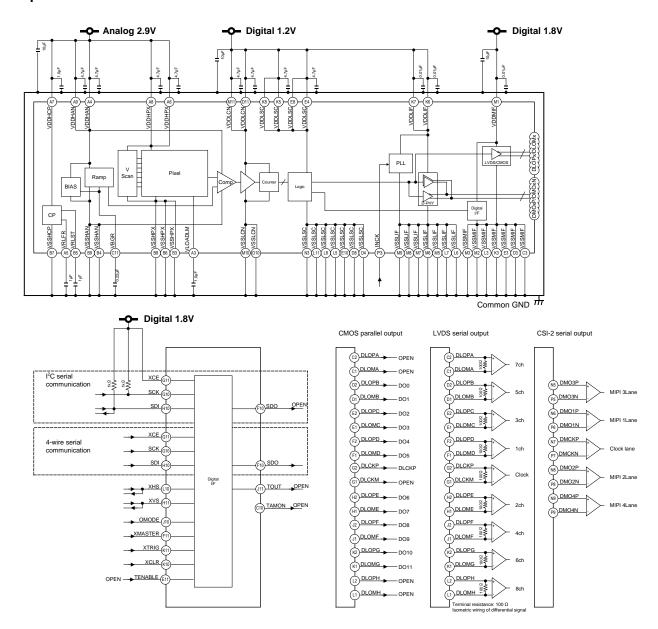
Sensor Setting Flow (Sensor Slave Mode)

Setting Flow in Sensor Master Mode


The figure below shows operating flow in sensor master mode.

For details of "Power-on" to "Reset cancel", see the item of "Power on sequence" in this section.

For details of "Standby cancel" until "Wait for image stabilization", see the item of "Standby mode".


In master mode, "Master mode start" by setting register XMSTA to "0" after "Waiting for internal regulator stabilization"

"Standby setting (power save mode) can be made by setting the STANDBY register to "1" during "Operation". This time, set "master mode stop" by setting XMSTA to "1".

Sensor Setting Flow (Sensor Master Mode)

Peripheral Circuit

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party and other right due to same.

Spot Pixel Specifications


(AV_{DD} = 2.9 V, OV_{DD} = 1.8 V, DV_{DD} = 1.2 V, Tj = 60 $^{\circ}$ C, 30 frame/s, Gain: 0 dB)

	Level		Maximum distorted pixels in each zone			Measurement		
Type of distortion			0 to II'	Effective OB	III	Ineffective OB	method	Remarks
Black or white	30 % ≤ D		15	No evaluation criteria applied		1		
pixels at high light			10					
White pixels	5.6 mV <u><</u> D		150		No evaluation criteria applied		2	1/30 s storage
in the dark								
Black pixels at	D 4 730 mV		0	No evaluation		3		
signal saturated	D <u><</u>	730 mV	0	o criteria applied				

Note) 1. Zone is specified based on all-pixel drive mode

- 2. D Spot pixel level
- 3. See the Spot Pixel Pattern Specifications for the specifications in which pixel and black pixel are close.

Zone Definition

Notice on White Pixels Specifications

After delivery inspection of CMOS image sensors, cosmic radiation may distort pixels of CMOS image sensors, and then distorted pixels may cause white point effects in dark signals in picture images. (Such white point effects shall be hereinafter referred to as "White Pixels".) Unfortunately, it is not possible with current scientific technology for CMOS image sensors to prevent such White Pixels. It is recommended that when you use CMOS image sensors, you should consider taking measures against such White Pixels, such as adoption of automatic compensation systems for White Pixels in dark signals and establishment of quality assurance standards. Unless the Seller's liability for White Pixels is otherwise set forth in an agreement between you and the Seller, Sony Corporation or its distributors (hereinafter collectively referred to as the "Seller") will, at the Seller's expense, replace such CMOS image sensors, in the event the CMOS image sensors delivered by the Seller are found to be to the Seller's satisfaction, to have over the allowable range of White Pixels as set forth above under the heading "Spot Pixels Specifications", within the period of three months after the delivery date of such CMOS image sensors from the Seller to you; provided that the Seller disclaims and will not assume any liability after you have incorporated such CMOS image sensors into other products. Please be aware that Seller disclaims and will not assume any liability for (1) CMOS image sensors fabricated, altered or modified after delivery to you, (2) CMOS image sensors incorporated into other products, (3) CMOS image sensors shipped to a third party in any form whatsoever, or (4) CMOS image sensors delivered to you over three months ago. Except the above mentioned replacement by Seller, neither Sony Corporation nor its distributors will assume any liability for White Pixels. Please resolve any problem or trouble arising from or in connection with White Pixels at your costs and expenses.

[For Your Reference] The Annual Number of White Pixels Occurrence

The chart below shows the predictable data on the annual number of White Pixels occurrence in a single-story building in Tokyo at an altitude of 0 meters. It is recommended that you should consider taking measures against the annual White Pixels, such as adoption of automatic compensation systems appropriate for each annual number of White Pixels occurrence.

The data in the chart is based on records of past field tests, and signifies estimated number of White Pixels calculated according to structures and electrical properties of each device. Moreover, the data in the chart is for your reference purpose only, and is not to be used as part of any CMOS image sensor specifications.

Example of Annual Number of Occurrence

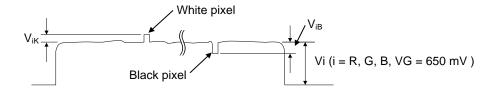
White Pixel Level (in case of integration time = $1/30 \text{ s}$) (Tj = $60 ^{\circ}\text{C}$ / LCG mode)	Annual number of occurrence
5.6 mV or higher	14 pcs
10.0 mV or higher	8 pcs
24.0 mV or higher	3 pcs
50.0 mV or higher	2 pcs
72.0 mV or higher	1 pcs

- Note 1) The above data indicates the number of White Pixels occurrence when a CMOS image sensor is left for a year.
- Note 2) The annual number of White Pixels occurrence fluctuates depending on the CMOS image sensor storage environment (such as altitude, geomagnetic latitude and building structure), time (solar activity effects) and so on. Moreover, there may be statistic errors. Please take notice and understand that this is an example of test data with experiments that have being conducted over a specific time period and in a specific environment.
- Note 3) This data does not guarantee the upper limits of the number of White Pixels occurrence.

For Your Reference:

The annual number of White Pixels occurrence at an altitude of 3,000 meters is from 5 to 10 times more than that at an altitude of 0 meters because of the density of the cosmic rays. In addition, in high latitude geographical areas such as London and New York, the density of cosmic rays increases due to a difference in the geomagnetic density, so the annual number of White Pixels occurrence in such areas approximately doubles when compared with that in Tokyo.

Material_No.03-0.0.8


Measurement Method for Spot Pixels

After setting to standard imaging condition II, and the device driver should be set to meet bias and clock voltage conditions. Configure the drive circuit according to the example and measure.

1. Black or white pixels at high light

After adjusting the luminous intensity so that the average value VG of the Gb / Gr signal outputs is 650 mV, measure the local dip point (black pixel at high light, V_{IB}) and peak point (white pixel at high light, V_{IK}) in the Gr / Gb / R / B signal output Vi (i = Gr / Gb / R / B), and substitute the value into the following formula.

Spot pixel level D = ((ViB or Vik) / Average value of Vi) x 100 [%]

Signal output waveform of R / G / B channel

2. White pixels in the dark

Set the device to a dark setting and measure the local peak point of the signal output waveform, using the average value of the dark signal output as a reference.

3. Black pixels at signal saturated

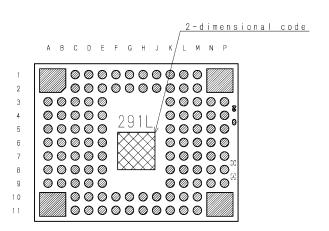
Set the device to operate in saturation and measure the local dip point, using the OB output as a reference.

Signal output waveform of R/G/B channel

Spot Pixel Pattern Specification

White Pixel, Black Pixel and Bright Pixel are judged from the pattern whether they are allowed or rejected, and counted.

List of White Pixel, Black Pixel and Bright Pixel Pattern


No.	Pattern R G B	It provides by color filter array described in the left.	White pixel Black pixel Bright pixel
1		Same color	Rejected
2		Same color	Rejected

- Note) 1."●" shows the position of white pixel, black pixel and bright pixel.

 White pixel, black pixel and bright pixel are specified separately according the pattern.

 (Example: If a black pixel and a white pixel is in the pattern No.1 respectively, they are not judged to be rejected.)
 - 2. When one or more spot pixels indicated "Rejected" is selected and removed.
 - 3. Spot pixels other than described in the table above are all counted including the number of allowable spot pixels by zone.

Marking

Note:Following characters enter into "Y", and "Z". (No Au coat)
Y:In English upper case character. One character
Z:Number, single number

DRAWING No. AM-C291LQR (2D)

Notes On Handling

1. Static charge prevention

Image sensors are easily damaged by static discharge. Before handling be sure to take the following protective measures.

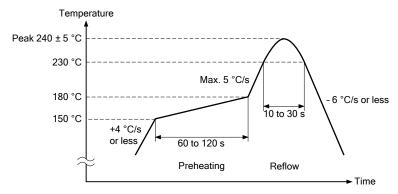
- (1) Either handle bare handed or use non-chargeable gloves, clothes or material. Also use conductive shoes.
- (2) Use a wrist strap when handling directly.
- (3) Install grounded conductive mats on the floor and working table to prevent the generation of static electricity.
- (4) Ionized air is recommended for discharge when handling image sensors.
- (5) For the shipment of mounted boards, use boxes treated for the prevention of static charges.

2. Protection from dust and dirt

Image sensors are packed and delivered with care taken to protect the element glass surfaces from harmful dust and dirt. Clean glass surfaces with the following operations as required before use.

- (1) Perform all lens assembly and other work in a clean environment (class 1000 or less).
- (2) Do not touch the glass surface with hand and make any object contact with it. If dust or other is stuck to a glass surface, blow it off with an air blower. (For dust stuck through static electricity, ionized air is recommended.)
- (3) Clean with a cotton swab with ethyl alcohol if grease stained. Be careful not to scratch the glass.
- (4) Keep in a dedicated case to protect from dust and dirt. To prevent dew condensation, preheat or precool when moving to a room with great temperature differences.
- (5) When a protective tape is applied before shipping, remove the tape applied for electrostatic protection just before use. Do not reuse the tape.

3. Installing (attaching)


- (1) If a load is applied to the entire surface by a hard component, bending stress may be generated and the package may fracture, etc., depending on the flatness of the bottom of the package. Therefore, for installation, use either an elastic load, such as a spring plate, or an adhesive.
- (2) The adhesive may cause the marking on the rear surface to disappear.
- (3) If metal, etc., clash or rub against the package surface, the package may chip or fragment and generate dust.
- (4) Acrylate anaerobic adhesives are generally used to attach this product. In addition, cyanoacrylate instantaneous adhesives are sometimes used jointly with acrylate anaerobic adhesives to hold the product in place until the adhesive completely hardens. (Reference)
- (5) Note that the sensor may be damaged when using ultraviolet ray and infrared laser for mounting it.

4. Recommended reflow soldering conditions

The following items should be observed for reflow soldering.

(1) Temperature profile for reflow soldering

Control item	Profile (at part side surface)	
1. Preheating	150 to 180 °C 60 to 120 s	
2. Temperature up (down)	+4 °C/s or less (- 6 °C/s or less)	
3. Reflow temperature	Over 230 °C 10 to 30 s Max. 5 °C/s	
4. Peak temperature	Max. 240 ± 5 °C	

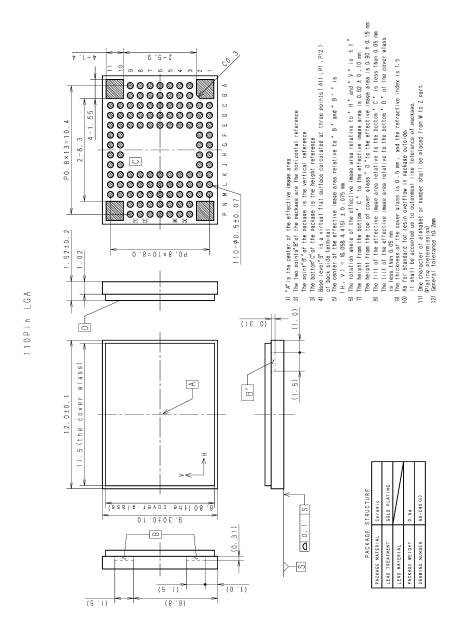
(2) Reflow conditions

- (a) Make sure the temperature of the upper surface of the seal glass resin adhesive portion of the package does not exceed 245 °C.
- (b) Perform the reflow soldering only one time.
- (c) Finish reflow soldering within 72 h after unsealing the degassed packing.

 Store the products under the condition of temperature of 30 °C or less and humidity of 70 % RH or less after unsealing the package.
- (d) Perform re-baking only one time under the condition at 125 $^{\circ}\text{C}$ for 24 h.

(3) Others

- (a) Carry out evaluation for the solder joint reliability in your company.
- (b) After the reflow, the paste residue of protective tape may remain around the seal glass. (The paste residue of protective tape should be ignored except remarkable one.)
- (c) Note that X-ray inspection may damage characteristics of the sensor.


5. Others

- (1) Do not expose to strong light (sun rays) for long periods, as the color filters of color devices will be discolored.
- (2) Exposure to high temperature or humidity will affect the characteristics. Accordingly avoid storage or use in such conditions.
- (3) This product is precision optical parts, so care should be taken not to apply excessive mechanical shocks or force.
- (4) Note that imaging characteristics of the sensor may be affected when approaching strong electromagnetic wave or magnetic field during operation.
- (5) Note that image may be affected by the light leaked to optical black when using an infrared cut filter that has transparency in near infrared ray area during shooting subjects with high luminance.

Material_No.14-0.0.6

Package Outline

(Unit: mm)

List of Trademark Logos and Definition Statements

* Exmor R is a trademark of Sony Corporation. The Exmor R is a Sony's CMOS image sensor with significantly enhanced imaging characteristics including sensitivity and low noise by changing fundamental structure of ExmorTM pixel adopted column parallel A/D converter to back-illuminated type.

STARVIS

* STARVIS is a trademark of Sony Corporation. The STARVIS is back-illuminated pixel technology used in CMOS image sensors for surveillance camera applications. It features a sensitivity of 2000 mV or more per 1 µm² (color product, when imaging with a 706 cd/m² light source, F5.6 in 1 s accumulation equivalent), and realizes high picture quality in the visible-light and near infrared light regions.

Sales: Shenzhen Sunnywale Inc, www.sunnywale.com, awin@sunnywale.com, Wechat: 9308762